Aguey-Zinsou, K.F., Ares-Fernandez, J.R.: Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ. Sci. 3, 526–543 (2010)
Article
CAS
Google Scholar
Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)
Article
CAS
Google Scholar
Jia, Y., Sun, C., Shen, S., Zou, J., Mao, S.S., Yao, X.: Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew. Sust. Energ. Rev. 44, 289–303 (2015)
Article
CAS
Google Scholar
Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy. 32, 1121–1140 (2007)
Article
CAS
Google Scholar
Huot, J., Liang, G., Boily, S., Van Neste, A., Schulz, R.: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys. Compd. 293–295, 495–500 (1999)
Article
Google Scholar
Varin, R., Czujko, T., Wronski, Z.: Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17, 3856 (2006)
Article
CAS
Google Scholar
Danaie, M., Mitlin, D.: TEM analysis and sorption properties of high-energy milled MgH2 powders. J. Alloys. Compd. 476, 590–598 (2009)
Article
CAS
Google Scholar
Danaie, M., Tao, S., Kalisvaart, P., Mitlin, D.: Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta. Mater. 58, 3162–3172 (2010)
Article
CAS
Google Scholar
Wagemans, R.W.P., van Lenthe, J.H., de Jongh, P.E., van Dillen, A.J., de Jong, K.P.: Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127, 16675–16680 (2005)
Article
CAS
Google Scholar
Kim, K.C., Dai, B., Johnson, J.K., Sholl, D.S.: Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20, 204001 (2009)
Article
Google Scholar
de Jongh, P.E., Wagemans, R.W.P., Eggenhuisen, T.M., Dauvillier, B.S., Radstake, P.B., Meeldijk, J.D., Geus, J.W., de Jong, K.P.: The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem. Mater. 19, 6052–6057 (2007)
Article
Google Scholar
Jeon, K.J., Moon, H.R., Ruminski, A.M., Jiang, B., Kisielowski, C., Bardhan, R., Urban, J.J.: Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 286–290 (2011)
Article
CAS
Google Scholar
Makridis, S.S., Gkanas, E.I., Panagakos, G., Kikkinides, E.S., Stubos, A.K., Wagener, P., Barcikowski, S.: Polymer-stable magnesium nanocomposites prepared bylaser ablation for efficient hydrogen storage. Int. J. Hydrog. Energy 38, 11530–11535 (2013)
Article
CAS
Google Scholar
Zhang, S., Gross, A.F., Van Atta, S.L., Lopez, M., Liu, P., Ahn, C.C., Vajo, J.J., Jensen, C.M.: The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology 20, 204027 (2009)
Article
Google Scholar
Mooij, L.P., Baldi, A., Boelsma, C., Shen, K., Wagemaker, M., Pivak, Y., Schreuders, H., Griessen, R., Dam, B.: Interface energy controlled thermodynamics of nanoscale metal hydrides. Adv. Energy. Mater. 1, 754–758 (2011)
Article
CAS
Google Scholar
Kalidindi, S.B., Jagirdar, B.R.: Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening. Inorg. Chem. 48, 4524–4529 (2009)
Article
CAS
Google Scholar
Aguey-Zinsou, K.F., Ares-Fernndez, J.R.: Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem. Mater. 20, 376–378 (2008)
Article
CAS
Google Scholar
Anastasopol, A., Pfeiffer, T.V., Middelkoop, J., Lafont, U., Canales-Perez, R.J., Schmidt-Ott, A., Mulder, F.M., Eijt, S.W.H.: Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation. J. Am. Chem. Soc. 135, 7891–7900 (2013)
Article
CAS
Google Scholar
Jia, Y., Sun, C., Cheng, L., Wahab, M.A., Cui, J., Zou, J., Zhu, M., Yao, X.: Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys. 15, 5814 (2013)
Article
CAS
Google Scholar
Schober, T., Chason, M.K.: A CTEM AND HVEM STUDY OF HYDRIDE PRECIPITATION IN MAGNESIUM. Metal-Hydrogen Systems, pp. 177–184. Pergamon, Oxford (1982)
Chapter
Google Scholar
Paik, B., Jones, I., Walton, A., Mann, V., Book, D., Harris, I.: MgH2 → Mg phase transformation driven by a high-energy electron beam: An in situ transmission electron microscopy study. Philos. Mag. Lett. 90, 1–7 (2010)
Article
CAS
Google Scholar
Danaie, M., Malac, M., Mitlin, D.: Investigation of beam damage mechanism of ball-milled MgH2 powder. Microsc. Microanal. 14, 278–279 (2008)
Article
Google Scholar
Zaluzec, N. J., Schober, T., Westlake D. G.: Application of EELS to the study of metal-hydrogen systems. Thirty-ninth annual EMSA meeting, 1981
Egerton, R.F.: Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum Press, New York (1989)
Google Scholar
Lutterotti, L.: Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Meth. B 268, 334–340 (2010)
Article
CAS
Google Scholar
Mooij, L., Dam, B.: Nucleation and growth mechanisms of nano magnesium hydride from the hydrogen sorption kinetics. Phys. Chem. Chem. Phys. 15, 11501 (2013)
Article
CAS
Google Scholar
Egerton, R.F., Li, P., Malac, M.: Radiation damage in the TEM and SEM. Micron. 35, 399–409 (2004)
Article
CAS
Google Scholar
Egerton, R. F.: Electron energy-loss spectroscopy in the electron microscope. 3rd edn, Springer New York (2011)
Friedrichs, O., Snáchez-López, J., López-Cartes, C., Dornheim, M., Klassen, T., Bormann, R., Fernández, A.: Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2. Appl. Surf. Sci. 252, 2334–2345 (2006)
Article
CAS
Google Scholar
House, S.D., Liu, X., Rockett, A.A., Majzoub, E.H., Robertson, I.M.: Characterization of the dehydrogenation process of LiBH4 confined in nanoporous carbon. J. Phys. Chem. C. 118, 8843–8851 (2014)
Article
CAS
Google Scholar
Ikeda, K., Muto, S., Tatsumi, K., Menjo, M., Kato, S., Bielmann, M., Züttel, A., Jensen, C.M., Orimo, S.: Dehydriding reaction of AlH3: insitu microscopic observations combined with thermal and surface analyses. Nanotechnology 20, 204004 (2009)
Article
CAS
Google Scholar
Herley, P.J., Jones, W.: Transmission electron microscopy of beam-sensitive metal hydrides*. Z. Phys. Chem. 147, 147–159 (1986)
Article
CAS
Google Scholar
Egerton, R.F., Crozier, P.A., Rice, P.: Electron energy-loss spectroscopy and chemical change. Ultramicroscopy. 23, 305–312 (1987)
Article
CAS
Google Scholar
Deprez, E., Justo, A., Rojas, T.C., López-Cartés, C., Bonatto, C., Minella, C.B., Bösenberg, U., Dornheim, M., Bormann, R., Fernández, A.: Microstructural study of the LiBH4-MgH2 reactive hydride composite with and without Ti-isopropoxide additive. Acta. Mater. 58, 5683–5694 (2010)
Article
CAS
Google Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B., Zandbergen, H.: In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5bar hydrogen pressure and 20–400 °C. Ultramicroscopy 112, 47–52 (2012)
Article
CAS
Google Scholar