Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K.: Electron microscopy image enhanced. Nature 392(6678), 768 (1998)
Article
CAS
Google Scholar
Batson, P., Dellby, N., Krivanek, O.: Sub-ångström resolution using aberration corrected electron optics. Nature 418(6898), 617 (2002)
Article
CAS
Google Scholar
Pennycook, S.J., Varela, M., Hetherington, J., Kirkland, A.I.: Materials advances through aberration-corrected electron microscopy. MRS Bull. 31(1), 36–43 (2006)
Article
CAS
Google Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O., Murfitt, M., Szilagyi, Z., Lupini, A.R., Borisevich, A., Sides, W., Pennycook, S.J.: Direct sub-ångström imaging of a crystal lattice. Science 305(5691), 1741–1741 (2004)
Article
CAS
Google Scholar
Aso, K., Shigematsu, K., Yamamoto, T., Matsumura, S.: Detection of picometer-order atomic displacements in drift-compensated HAADF-STEM images of gold nanorods. J. Electron Microsc. 65(5), 391–399 (2016)
CAS
Google Scholar
Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., et al.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14(5), 469–477 (2008)
Article
CAS
Google Scholar
O’Keefe, M.A.: Seeing atoms with aberration-corrected sub-ångström electron microscopy. Ultramicroscopy 108(3), 196–209 (2008)
Article
Google Scholar
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y., Takayanagi, K.: Stem imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300 kV cold field emission gun. J. Electron Microsc 58(6), 357–361 (2009)
Article
CAS
Google Scholar
Krivanek, O., Dellby, N., Lupini, A.: Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 1–11 (1999)
Article
CAS
Google Scholar
Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)
Article
Google Scholar
Kimoto, K., Asaka, T., Yu, X., Nagai, T., Matsui, Y., Ishizuka, K.: Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110(7), 778–782 (2010)
Article
CAS
Google Scholar
Gao, P., Kumamoto, A., Ishikawa, R., Lugg, N., Shibata, N., Ikuhara, Y.: Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy 184, 177–187 (2018)
Article
CAS
Google Scholar
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I., Voyles, P.M.: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155 (2014)
Article
CAS
Google Scholar
Zhu, Y., Ophus, C., Ciston, J., Wang, H.: Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Materialia 61(15), 5646–5663 (2013)
Article
CAS
Google Scholar
Mukherjee, D., Prokhorenko, S., Miao, L., Wang, K., Bousquet, E., Gopalan, V., Alem, N.: Atomic-scale measurement of polar entropy. Phys. Rev. B 100(10), 104102 (2019)
Article
CAS
Google Scholar
Yadav, A., Nelson, C., Hsu, S., Hong, Z., Clarkson, J., Schlepütz, C., Damodaran, A., Shafer, P., Arenholz, E., Dedon, L., et al.: Observation of polar vortices in oxide superlattices. Nature 530(7589), 198 (2016)
Article
CAS
Google Scholar
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.-H., Eom, C.-B., Schlom, D.G., et al.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11(2), 828–834 (2011)
Article
CAS
Google Scholar
Azizi, A., Wang, Y., Stone, G., Elias, A.L., Lin, Z., Terrones, M., Crespi, V.H., Alem, N.: Defect coupling and sub-angstrom structural distortions in \({\text{ W }}_{{\rm 1-x}} {\text{ Mo }}_{{\rm x}} {\text{ S }}_{2}\) monolayers. Nano Lett. 17(5), 2802–2808 (2017)
Article
CAS
Google Scholar
Stone, G., Ophus, C., Birol, T., Ciston, J., Lee, C.-H., Wang, K., Fennie, C.J., Schlom, D.G., Alem, N., Gopalan, V.: Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. Nat. Commun. 7, 12572 (2016)
Article
CAS
Google Scholar
Matsumoto, T., Ishikawa, R., Tohei, T., Kimura, H., Yao, Q., Zhao, H., Wang, X., Chen, D., Cheng, Z., Shibata, N., et al.: Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal \({\text{ YMnO }}_{3}\) single crystal visualized by a spherical aberration-corrected stem. Nano Lett. 13(10), 4594–4601 (2013)
Article
CAS
Google Scholar
Williams, D.B., Carter, C.B.: Transmission Electron Microscopy. Springer, Berlin (1996)
Book
Google Scholar
MacArthur, K., Pennycook, T., Okunishi, E., D’Alfonso, A., Lugg, N., Allen, L., Nellist, P., et al.: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF-STEM images. Ultramicroscopy 133, 109–119 (2013)
Article
Google Scholar
Watanabe, K., Yamazaki, T., Kikuchi, Y., Kotaka, Y., Kawasaki, M., Hashimoto, I., Shiojiri, M.: Atomic-resolution incoherent high-angle annular dark field STEM images of Si (011). Phys. Rev. B 63(8), 085316 (2001)
Article
Google Scholar
Abe, E., Kawamura, Y., Hayashi, K., Inoue, A.: Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materialia 50(15), 3845–3857 (2002)
Article
CAS
Google Scholar
Rosenauer, A., Schowalter, M.: STEMSIM—a new software tool for simulation of STEM HAADF Z-contrast imaging. In: Microscopy of Semiconducting Materials 2007, pp. 170–172. Springer, Berlin (2008)
Wang, Z., Li, Z., Park, S., Abdela, A., Tang, D., Palmer, R.: Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters. Phys. Rev. B 84(7), 073408 (2011)
Article
Google Scholar
Spaldin, N.A.: A beginner’s guide to the modern theory of polarization. J. Solid State Chem. 195, 2–10 (2012)
Article
CAS
Google Scholar
Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, Oxford (1977)
Google Scholar
Okunishi, E., Ishikawa, I., Sawada, H., Hosokawa, F., Hori, M., Kondo, Y.: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15(S2), 164 (2009)
Article
Google Scholar
Watanabe, K., Asano, E., Yamazaki, T., Kikuchi, Y., Hashimoto, I.: Symmetries in BF and HAADF STEM image calculations. Ultramicroscopy 102(1), 13–21 (2004)
Article
CAS
Google Scholar
Hossain, J., Sharma, S., Kishore, V.: Multi-peak gaussian fit applicability to wind speed distribution. Renew. Sustain. Energy Rev. 34, 483–490 (2014)
Article
Google Scholar
Mukoyama, T.: Fitting of gaussian to peaks by non-iterative method. Nucl. Instrum. Methods 125(2), 289–291 (1975)
Article
CAS
Google Scholar
Nord, M., Vullum, P.E., MacLaren, I., Tybell, T., Holmestad, R.: Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional gaussian fitting. Adv. Struct. Chem. imaging 3(1), 9 (2017)
Article
Google Scholar
De Backer, A., Van den Bos, K., Van den Broek, W., Sijbers, J., Van Aert, S.: StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy 171, 104–116 (2016)
Article
Google Scholar
Wang, Y., Salzberger, U., Sigle, W., Suyolcu, Y.E., van Aken, P.A.: Oxygen octahedra picker: a software tool to extract quantitative information from STEM images. Ultramicroscopy 168, 46–52 (2016)
Article
Google Scholar
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)
Article
Google Scholar
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)
Article
Google Scholar
Li, Y.: Centering, trust region, reflective techniques for nonlinear minimization subject to bounds. Technical report, Cornell University (1993)
O’Keefe, M.A., Kilaas, R.: Advances in high-resolution image simulation. Scanning Microsc. Suppl. 2, 225–244 (1988)
Google Scholar
Abrahams, S., Reddy, J.M., Bernstein, J.: Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24 °C. J. Phys. Chem. Solids 27(6–7), 997–1012 (1966)
Article
CAS
Google Scholar
Boysen, H., Altorfer, F.: A neutron powder investigation of the high-temperature structure and phase transition in \({\text{ LiNbO }}_{3}\). Acta Crystallogr. Sect. B Struct. Sci. 50(4), 405–414 (1994)
Article
Google Scholar
Megaw, H.D.: A note on the structure of lithium niobate, \({\text{ LiNbO }}_{3}\). Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 24(6), 583–588 (1968)
Article
CAS
Google Scholar