Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K.: Electron microscopy image enhanced. Nature **392**(6678), 768 (1998)

Article
CAS
Google Scholar

Batson, P., Dellby, N., Krivanek, O.: Sub-ångström resolution using aberration corrected electron optics. Nature **418**(6898), 617 (2002)

Article
CAS
Google Scholar

Pennycook, S.J., Varela, M., Hetherington, J., Kirkland, A.I.: Materials advances through aberration-corrected electron microscopy. MRS Bull. **31**(1), 36–43 (2006)

Article
CAS
Google Scholar

Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O., Murfitt, M., Szilagyi, Z., Lupini, A.R., Borisevich, A., Sides, W., Pennycook, S.J.: Direct sub-ångström imaging of a crystal lattice. Science **305**(5691), 1741–1741 (2004)

Article
CAS
Google Scholar

Aso, K., Shigematsu, K., Yamamoto, T., Matsumura, S.: Detection of picometer-order atomic displacements in drift-compensated HAADF-STEM images of gold nanorods. J. Electron Microsc. **65**(5), 391–399 (2016)

CAS
Google Scholar

Kisielowski, C., Freitag, B., Bischoff, M., Van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., et al.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. **14**(5), 469–477 (2008)

Article
CAS
Google Scholar

O’Keefe, M.A.: Seeing atoms with aberration-corrected sub-ångström electron microscopy. Ultramicroscopy **108**(3), 196–209 (2008)

Article
Google Scholar

Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y., Takayanagi, K.: Stem imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300 kV cold field emission gun. J. Electron Microsc **58**(6), 357–361 (2009)

Article
CAS
Google Scholar

Krivanek, O., Dellby, N., Lupini, A.: Towards sub-Å electron beams. Ultramicroscopy **78**(1–4), 1–11 (1999)

Article
CAS
Google Scholar

Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. **102**(9), 096101 (2009)

Article
Google Scholar

Kimoto, K., Asaka, T., Yu, X., Nagai, T., Matsui, Y., Ishizuka, K.: Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy **110**(7), 778–782 (2010)

Article
CAS
Google Scholar

Gao, P., Kumamoto, A., Ishikawa, R., Lugg, N., Shibata, N., Ikuhara, Y.: Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy **184**, 177–187 (2018)

Article
CAS
Google Scholar

Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I., Voyles, P.M.: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. **5**, 4155 (2014)

Article
CAS
Google Scholar

Zhu, Y., Ophus, C., Ciston, J., Wang, H.: Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images. Acta Materialia **61**(15), 5646–5663 (2013)

Article
CAS
Google Scholar

Mukherjee, D., Prokhorenko, S., Miao, L., Wang, K., Bousquet, E., Gopalan, V., Alem, N.: Atomic-scale measurement of polar entropy. Phys. Rev. B **100**(10), 104102 (2019)

Article
CAS
Google Scholar

Yadav, A., Nelson, C., Hsu, S., Hong, Z., Clarkson, J., Schlepütz, C., Damodaran, A., Shafer, P., Arenholz, E., Dedon, L., et al.: Observation of polar vortices in oxide superlattices. Nature **530**(7589), 198 (2016)

Article
CAS
Google Scholar

Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.-H., Eom, C.-B., Schlom, D.G., et al.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. **11**(2), 828–834 (2011)

Article
CAS
Google Scholar

Azizi, A., Wang, Y., Stone, G., Elias, A.L., Lin, Z., Terrones, M., Crespi, V.H., Alem, N.: Defect coupling and sub-angstrom structural distortions in \({\text{ W }}_{{\rm 1-x}} {\text{ Mo }}_{{\rm x}} {\text{ S }}_{2}\) monolayers. Nano Lett. **17**(5), 2802–2808 (2017)

Article
CAS
Google Scholar

Stone, G., Ophus, C., Birol, T., Ciston, J., Lee, C.-H., Wang, K., Fennie, C.J., Schlom, D.G., Alem, N., Gopalan, V.: Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. Nat. Commun. **7**, 12572 (2016)

Article
CAS
Google Scholar

Matsumoto, T., Ishikawa, R., Tohei, T., Kimura, H., Yao, Q., Zhao, H., Wang, X., Chen, D., Cheng, Z., Shibata, N., et al.: Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal \({\text{ YMnO }}_{3}\) single crystal visualized by a spherical aberration-corrected stem. Nano Lett. **13**(10), 4594–4601 (2013)

Article
CAS
Google Scholar

Williams, D.B., Carter, C.B.: Transmission Electron Microscopy. Springer, Berlin (1996)

Book
Google Scholar

MacArthur, K., Pennycook, T., Okunishi, E., D’Alfonso, A., Lugg, N., Allen, L., Nellist, P., et al.: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF-STEM images. Ultramicroscopy **133**, 109–119 (2013)

Article
Google Scholar

Watanabe, K., Yamazaki, T., Kikuchi, Y., Kotaka, Y., Kawasaki, M., Hashimoto, I., Shiojiri, M.: Atomic-resolution incoherent high-angle annular dark field STEM images of Si (011). Phys. Rev. B **63**(8), 085316 (2001)

Article
Google Scholar

Abe, E., Kawamura, Y., Hayashi, K., Inoue, A.: Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materialia **50**(15), 3845–3857 (2002)

Article
CAS
Google Scholar

Rosenauer, A., Schowalter, M.: STEMSIM—a new software tool for simulation of STEM HAADF Z-contrast imaging. In: Microscopy of Semiconducting Materials 2007, pp. 170–172. Springer, Berlin (2008)

Wang, Z., Li, Z., Park, S., Abdela, A., Tang, D., Palmer, R.: Quantitative Z-contrast imaging in the scanning transmission electron microscope with size-selected clusters. Phys. Rev. B **84**(7), 073408 (2011)

Article
Google Scholar

Spaldin, N.A.: A beginner’s guide to the modern theory of polarization. J. Solid State Chem. **195**, 2–10 (2012)

Article
CAS
Google Scholar

Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, Oxford (1977)

Google Scholar

Okunishi, E., Ishikawa, I., Sawada, H., Hosokawa, F., Hori, M., Kondo, Y.: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. **15**(S2), 164 (2009)

Article
Google Scholar

Watanabe, K., Asano, E., Yamazaki, T., Kikuchi, Y., Hashimoto, I.: Symmetries in BF and HAADF STEM image calculations. Ultramicroscopy **102**(1), 13–21 (2004)

Article
CAS
Google Scholar

Hossain, J., Sharma, S., Kishore, V.: Multi-peak gaussian fit applicability to wind speed distribution. Renew. Sustain. Energy Rev. **34**, 483–490 (2014)

Article
Google Scholar

Mukoyama, T.: Fitting of gaussian to peaks by non-iterative method. Nucl. Instrum. Methods **125**(2), 289–291 (1975)

Article
CAS
Google Scholar

Nord, M., Vullum, P.E., MacLaren, I., Tybell, T., Holmestad, R.: Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional gaussian fitting. Adv. Struct. Chem. imaging **3**(1), 9 (2017)

Article
Google Scholar

De Backer, A., Van den Bos, K., Van den Broek, W., Sijbers, J., Van Aert, S.: StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. Ultramicroscopy **171**, 104–116 (2016)

Article
Google Scholar

Wang, Y., Salzberger, U., Sigle, W., Suyolcu, Y.E., van Aken, P.A.: Oxygen octahedra picker: a software tool to extract quantitative information from STEM images. Ultramicroscopy **168**, 46–52 (2016)

Article
Google Scholar

Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. **2**(2), 164–168 (1944)

Article
Google Scholar

Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. **11**(2), 431–441 (1963)

Article
Google Scholar

Li, Y.: Centering, trust region, reflective techniques for nonlinear minimization subject to bounds. Technical report, Cornell University (1993)

O’Keefe, M.A., Kilaas, R.: Advances in high-resolution image simulation. Scanning Microsc. Suppl. **2**, 225–244 (1988)

Google Scholar

Abrahams, S., Reddy, J.M., Bernstein, J.: Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24 °C. J. Phys. Chem. Solids **27**(6–7), 997–1012 (1966)

Article
CAS
Google Scholar

Boysen, H., Altorfer, F.: A neutron powder investigation of the high-temperature structure and phase transition in \({\text{ LiNbO }}_{3}\). Acta Crystallogr. Sect. B Struct. Sci. **50**(4), 405–414 (1994)

Article
Google Scholar

Megaw, H.D.: A note on the structure of lithium niobate, \({\text{ LiNbO }}_{3}\). Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. **24**(6), 583–588 (1968)

Article
CAS
Google Scholar