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Scanning transmission electron microscopy (STEM) provides sub-angstrom, atomic resolution images of crystalline
structures. However, in many applications, the ability to extract information such as atom positions, from such electron
micrographs, is severely obstructed by low signal-to-noise ratios of the acquired images resulting from necessary
limitations to the electron dose. We present a denoising strategy tailored to the special features of atomic-resolution
electron micrographs of crystals limited by Poisson noise based on the block-matching and 3D-filtering (BM3D)
algorithm by Dabov et al. We also present an economized block-matching strategy that exploits the periodic structure
of the observed crystals. On simulated single-shot STEM images of inorganic materials, with incident electron doses
below 4 C/cm?, our new method achieves precisions of 7 to 15 pm and an increase in peak signal-to-noise ratio
(PSNR) of 15 to 20 dB compared to noisy images and 2 to 4 dB compared to images denoised with the original BM3D.
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Background

Modern electron microscopy allows for atomic resolu-
tion images of crystalline structures [1]. However, the
full scope of resolution can be exploited only for mate-
rials with little electron beam sensitivity. Lowering the
electron dose decreases the signal-to-noise ratio (SNR)
of the acquired micrographs accordingly, degrading the
quality or even completely prohibiting the extraction of
desired information from the noisy micrographs. Exam-
ples of inorganic materials with high beam sensitiv-
ity, where scanning transmission electron microscopy
(STEM) images of poor SNR have to be used, are both
oxide [2] and metallic [3] catalysts. One important quan-
tity that may be extracted from atomic-resolution electron
micrographs is the positions of the atoms. The preci-
sion with which these can be determined is crucial for
the understanding of certain material properties [4,5]. For
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single-shot STEM images, the best reported precision is
about 15 pm [6]. A common technique to increase the
precision is to register a series of frames and extract the
atom positions from the average of the registered frames.
Kimoto et al. [7] achieved a precision of 5 pm using
rigid registration. More recently, a non-rigid registration
scheme has been developed by Berkels et al. [2] that has
achieved sub-picometer precision for STEM series [8].
Both registration schemes require many individual frames
of moderate SNR resulting in a very-high overall electron
dose applied to the material. Thus, to widen the applicabil-
ity of STEM to more beam-sensitive inorganic materials,
a central objective is to develop effective denoising meth-
ods that increase the single-shot image quality. This would
enable the extraction of desired information from indi-
vidual frames or the use of the individual frames for
registration, while using a lower electron dose.

Denoising in materials, electron microscopy is often
accomplished by simple spatial filters like a Gaussian blur
or median filter or frequency space low-pass or Wiener
filters (cf. [9-11]). These examples are all taken from mate-
rials robust enough under the electron beam to survive
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relatively high electron dose to obtain images with high
spatial oversampling (small pixels). More sophisticated
approaches that take advantage of the highly redundant
nature of some high-resolution STEM images have been
employed [12], building on tools developed for very beam-
sensitive biological samples [13-16]. While these methods,
mostly based on manipulations of the image in Fourier
space, are well established and have proven to perform
well on high-resolution transmission electron microscopy
(HRTEM) images of organic materials, they are tightly
linked to the periodicity of the data and have thus not been
widely adopted in STEM studies of aperiodic defects in
inorganic materials.

The most successful generic image denoising method
for arbitrary images available today rely on non-local
detection and averaging of self-similar image regions.
The first algorithm based on this strategy is the non-
local means filter (NLM) by Buades et al. [17]. Due to
the richness in self-similarity of electron micrographs of
crystals, NLM is in principle very well suited for denois-
ing such micrographs [18], and it has been employed in
biological electron microscopy [19]. However, two main
properties of low-dose electron micrographs of crystals
are disregarded by the original design and implementa-
tion of NLM, namely (1) NLM removes additive Gaussian
white noise (AGWN) instead of Poisson noise, which is
the dominant form of noise in low-dose STEM images;
and (2) NLM uses a local similarity search to reduce the
computational cost, whereas the distance between self-
similar points in images of crystals is at least as large
as the inter-atomic distance. In the case of STEM, there
is an additional difficulty caused by image distortions
resulting from the serial acquisition of the pixel data.
In view of these issues, we proposed an enhanced ver-
sion of NLM tailored to STEM imaging [20]. The most
significant enhancement was the development of an effi-
cient non-local similarity search, based on the generation
of periodic lattices in Fourier space [21]. However, the
basic NLM principle can be further improved by replac-
ing the simple weighted average of intensities of pixels
with similar neighborhoods by a more advanced collabo-
rative filtering of the corresponding image parts. Several
methods of this type have been proposed over the past
few years, e.g., optimized block-wise NLM by Coupé
et al. [22] and NLPCA by Salmon et al. [23], which is
based on principal component analysis. Among the most
successful variants is the block-matching and 3D-filtering
algorithm (BM3D) developed by Dabov et al. [24], which
has become a benchmark for image denoising algorithms
in the field of image processing. The extension of BM3D
to Poisson noise removal via application of the Anscombe
variance-stabilizing transformation [25] has already been
proposed by Mikitalo and Foi [26] who have contributed
an exact unbiased inverse transformation that increases
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the accuracy especially in the low-count regime. In [20], it
was found that despite being restricted to a local similarity
search, the original BM3D filter with extension to Poisson
noise outperformed the proposed periodic search NLM
filter. Thus, the starting point here is the BM3D filter.

In this paper, we discuss how modifications introduced
in STEM-tailored NLM [20] can be incorporated into the
state-of-the-art denoising algorithm BM3D in order to tap
its full potential on electron micrographs of crystals. More
precisely, as this method has been designed for Gaussian
white noise, a central task is to develop suitable modifi-
cations that effectively deal with Poisson noise. Another
focus is to exploit the atomic lattice structure that entails
a repeated appearance of self-similar image components
within a single frame. While we focus on the application
of STEM imaging of inorganic materials, the key features
of Poisson noise and oversampling are shared by HRTEM
images as well, so the proposed method should also be
applicable to HRTEM images. Also note that the proce-
dures proposed in this paper can be applied subsequently
for registering a series of low-dose frames to a single
reference frame [2].

The paper is organized as follows. First, we briefly
recall the original BM3D algorithm. Then, we present
two strategies for Poisson noise removal, namely vari-
ance stabilization based on the Anscombe transform and
using Poisson maximum-likelihood similarity measures
due to Deledalle et al. [27] for the block matching. The
main contribution is an adaptive non-local periodic block
matching. It exploits the repetitive structure within the
micrograph while keeping the computational cost afford-
able. Since the spatial distribution of the resulting block
estimates is highly non-uniform, potentially resulting in
a poor reconstruction in regions with few available block
estimates, we discuss possible remedies of this deficiency.
Finally, we evaluate the proposed method on simulated
data, where the ground truth, i.e., the true, noise-free
mean electron count per pixel, is available, showing the
improvement both in terms of visual image quality and in
quantitative measures such as peak signal-to-noise ratio
(PSNR), precision, and fidelity achieved by the proposed
method.

Methods

Block matching and 3D filtering

BM3D was developed on the basis of NLM. It was orig-
inally designed to remove additive Gaussian white noise
from natural images or other images exhibiting a sufficient
amount of self-similarity. The main idea of the algorithm
is to find similar parts within an image and remove noise
from those parts by sparsifying their common representa-
tion in a 3D transform domain. After processing all image
parts in this manner, one receives an overcomplete rep-
resentation of an estimate of the noise-free input image.
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Averaging all partial estimates in overlapping regions pro-
vides an estimate of the full underlying ground truth
image. The denoising process in the 3D transform domain
is performed in two stages, namely an initial hard thresh-
olding succeeded by a final Wiener filtering. In the follow-
ing, we briefly recall the definition of the original BM3D
filter as published in [28], which serves as a basis for the
methods developed in this work. We use a slightly simpli-
fied version of the algorithm described in [28] but with the
exception of a change of the block size from 8 x8 to 16 x 16,
all relevant parameters, as well as the unitary transforms
in the 3D domain, are chosen in exact agreement with
the original implementation of the BM3D filter [29] when
using the default profile, i.e., normal profile.

The original BM3D algorithm for Gaussian noise removal
Let us regard an image:

z: X={1,...,N} x{1,...,M} —> R,
x = flx) +n),
where f is the (noise-free) ground truth and n(-) ~
N (0,02) is AGWN, i.e., a normally distributed random
variable with zero mean and standard deviation o.

Let us fix some n € N with n < N and n < M and some
reference pixel:

1)

xeX={Gj)eX:1<i<N-n+tl,1<j<M-n+1}
(2)

and denote by Z, a block of size n x n with upper-left
corner x € X. The size n (in units of pixels) should be cho-
sen such that an n# x n block is roughly between 0.25 and
1.25 times as large as an atom within the image. Further-
more, we denote with Z,(y) for y € X the values of the
block in global coordinates, and with Z,[i,j]:= Z,(x1 +
i—1,x+j—1)fori=1,...,n, its values in local coor-
dinates. Note that we set Z,(y) = 0 outside the block’s
support. The block-matching part of BM3D consists of a
local search for a tuple of blocks that are similar to Z, in
the sense that their normalized L?-distance from Z, is less
than some threshold T > 0. More precisely, denoting by
Ng the size of the local search window and by Ny (x) the

Ns x Ns neighborhood centered around x € X , let:
Sy = {y € Ny ) : d(Zy, Zy) < 7,'} , (3)
where:
1
AZx, 2y) = 51122 = Zy 5
(4)

1 ¢ . -
— 2@l =21
ij=1
We then sort the set Sy by block similarity, i.e., the set
Sx becomes a tuple with d(Zy, Zs,),) < d(Zx,Zs,),) for
1 <i<j<#(Sy). From all matched coordinates in Sy, we
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now choose the ordered subset S, = ((Sx)i)?i‘l consisting

of the N := min{#(Sx), N3p} most similar blocks. Here,
N3p is some small number that controls the computa-
tional cost. Note that the choice of N3p may also implicitly
change the original threshold 7 in (3) to a possibly smaller
one. Stacking the best-matched blocks Z, y € S, on top of
each other yields an # x n x N, 3D tensor:

Zx[irjyk] = Z(wa) [lrl]x k= 1»~~~rNx1 (5)
k

with high correlation along the coordinate k. Figure 1
shows such a column of stacked blocks using a STEM
image as an example. Due to the correlation along
the coordinate k (indicated by a black-dotted arrow in
Figure 1), an efficient denoising of the tensor Z, can now
be performed as follows. Let 7 be some 3D unitary trans-
formation (e.g., Fourier or wavelet transform), and let Yy
denote the hard-thresholding operator with threshold 6,
which is chosen with some fixed proportionality to the
standard deviation o of the noise. The denoising proce-
dure for the 3D tensor Z consists of a hard thresholding
of the coefficients of the transformed tensor 7 (Z,), fol-
lowed by the inverse transformation. This leads to the
following estimator:

Vo= T (09 (T (22))) (6)

for the tensor Z,. A typical transformation would be
based, e.g., on a wavelet basis. To this estimator, one

assigns a weight w, = N, 1 where Nj is the num-
ber of retained non-zero transform coefficients after hard
thresholding.

Such block estimators are calculated for each reference
point in a subset Xz C X of all available block corners,
given by:

Xg = 1{(i,j) € X : i=1mod Nyep A j=1mod Nytep}-
(7)

Choosing Nstep < 7, the corresponding reference blocks
overlap. This guarantees an overcomplete representation
of the estimated image. An intermediate estimator fb”ic
for the desired image f is then defined as a weighted aver-
age over all overlapping block estimations. More precisely,
let )A’x,k = JAix[ k], kK = 1,...,N,, denote the kth slice
of the estimator for Z,, which is a 2D block estimate
corresponding to the block Z Gox and set:

N A
ZJCEXR Zkil WxYx,k(y)
N, ’
Lovexp ki1 WeXzg,, )

where xz denotes the characteristic function of the block
Z C X. Note that each block Z, may be matched to dif-
ferent references Z,, Z,/, resulting in different estimates
)A’x,k, )A’x/,k/ for the same block, i.e., (§x)k = (Sx’)k’ = yin
this case.

j?basic ()’) — 8)
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3) aggregate denoised blocks at original positions and average overlapping parts

Figure 1 lllustration of block-matching and 3D-filtering algorithm. The BM3D algorithm is demonstrated using a STEM image of a gallium
nitride crystal as an example. The magenta/cyan squares resemble exemplary 16 x 16 reference blocks (two out of 58,081 possible ones in the

256 x 256 image). The red/blue squares mark blocks that were matched to the magenta/cyan reference. The matched noisy blocks are stacked into
3D tensors (top right), which is then denoised, e.g., by replacing all pixels with mean values along the column direction (indicated by the
black-dotted arrow). The resulting denoised blocks (bottom right) are then aggregated at their original positions within the image (bottom left
image), and overlapping parts (green) of adjacent blocks are averaged, yielding a single denoised image as the result.

The final estimate f of the desired image f is now
calculated in a second iteration, where the whole proce-
dure described above is repeated with some modifications
briefly indicated next, referring to [28] for the details.
Denoting by Fy, the n x n block with upper-left corner
x extracted now from the basic estimate f basic the above
procedure is applied to the blocks Fy in place of Z, where
the analogs to the sets S in (3) are formed, however,
with respect to a possibly different threshold parameter 7.
Moreover, the analog to (6) may involve a different unitary
transformation (e.g., using local cosine transforms) and,

perhaps more importantly, hard thresholding is replaced
by Wiener filtering. Again, we refer to [28] for the details.

Figure 1 illustrates the BM3D procedure using a STEM
image as an example. It demonstrates the three main
steps of BM3D, which are performed for each reference
block: 1) matching blocks to a reference and stacking the
matched blocks into a 3D tensor, 2) denoising this col-
umn of matched blocks, and 3) aggregating the resulting
denoised blocks at their original positions and averaging
overlapping parts of adjacent blocks (green). For simplic-
ity, the illustration uses simple averaging along the column
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of matched blocks (black dotted arrow) as an example
procedure for denoising the 3D tensors. In practice, the
approaches described above provide better performance.

Like any block-averaging or non-local means approach,
our method has reduced performance near the edges of
the image. Since Ngtep < # for every y € X, there is a block
with corner x € X such that y € Z,. In other words,
for any pixel in the image (even at the boundary), there
is a block containing this pixel, resulting in an estimated
intensity of the pixel after the corresponding block has
been denoised in 3D transform domain. But because there
exist fewer overlapping blocks near the image boundaries,
there are fewer available estimates of boundary pixels that
can be used for further averaging. Therefore, both the
basic and final estimates fbmc and f, i.e., the intermedi-
ate result and the final denoised image, will show a slightly
reduced quality towards the image boundaries. However,
the denoising of each block together with its matched
blocks in 3D transform domain contributes much more to
the image quality than the averaging of spatially overlap-
ping blocks. Thus, the reduced quality at the boundaries
of images denoised with BM3D is usually not substantial
in practice.

Extension to Poisson noise removal via variance stabilization
As mentioned before, BM3D is designed to remove addi-
tive Gaussian white noise of some uniform standard devi-
ation o from an input image. In order to adapt this filter
to Poisson noise removal, Mékitalo and Foi [26] proposed
to use a variance-stabilizing transform (VST) that approx-
imately transforms any given image affected by Poisson
noise, i.e., of the form:

v:X — Ny, v(x) ~ Pois(A(x)), 9)

into an image with AGWN of standard deviation one.
Here, v ~ Pois(A) denotes a Poisson distributed random
variable with mean (and variance) A, i.e.:

Ake=k
P(v=k) = pk|r) = k‘ for k € Ny. (10)
The transformation:
3
Ak) =2,k + 3 (11)

is known as the Anscombe transform [25]. Mikitalo and
Foi proposed an exact unbiased inverse transform of the
form [26]:

AL E{AW) A} > E{v|A). (12)

Here, given random variables V, W, E{V|W} denote the
expectation of V given W. In their implementation [30],
Maikitalo and Foi provide tabulated values of this inverse
for arguments within the range [A(0), 100]. For smaller
arguments, the inverse is extended by zero, and for higher
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arguments, the asymptotic unbiased inverse transform is
used, see [25].

The procedure for Poisson noise removal is then given
by the following three-step procedure: first, apply the for-
ward Anscombe transform on the input image v, receiving
an input image z = A(v) with a noise model similar
to AGWN; second, apply the BM3D filter to this image
z, receiving an estimate f of E{A(v)|A}; and lastly, apply
the exact unbiased inverse Anscombe transform on f to
obtain an estimate  := A_l(f) of A.

Direct block matching for Poisson noise statistics

As pointed out by Salmon et al., the Anscombe transform
is not accurate in the extreme low-count regime, i.e., if the
average number of counts A(x) is smaller than three for
some x € X (cf. [23]). STEM images with such a small
number of counts are generally deemed useless, so they
are rarely acquired or published. However, the ability to
extract information from extreme low-dose images would
be a substantial advantage for a variety of problems, such
as characterization of metallic catalyst particles [3] and
polymers and molecular crystals [31].

The performance of two variants of non-local means on
images affected by Poisson noise are compared in [20].
The first one features the Anscombe transform and the
standard L2-patch similarity measure, while the second
one uses a Poisson maximum-likelihood-based patch sim-
ilarity measure from [27] without a preceding VST on
the input data. The results show that when the PSNR of
the input image is below 10 dB, the Poisson maximum-
likelihood ratio-based patch distances outperform the
strategy of using standard L?-distances on the Anscombe
transformed data.

The idea of using a Poisson maximum-likelihood-based
similarity measure can be easily adopted to block match-
ing when calculating the basic estimate via hard thresh-
olding within the BM3D algorithm, see (3), (6), (8). To
this end, we replace the L2-distance (4) by the following
distance:

1 n
dp(Zu, Zy) = — 3 f (Zelif) 2,0 1), (13)
ij=1
where f is defined through the Poisson maximum-
likelihood ratio:

k1M p (ko |
Ag(lggo)p(ql )p(ka|A)

14
max p(ki|A) max p(ka|)r) (14)
A€(0,00) r€(0,00)

pml(kl, kg) =

as follows [27]:
S ki, k2) := —log (pml(ki, k2))
= ky log ki + ko log ko — (k1 + ko) log (/q—;lq) .
(15)
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Using the distance (13), we then replace the set of
matched blocks S (cf. (3)) with:

SP={y e N : dp(Zs, Z)) < —log(zh)},  (16)

where 7% is a new threshold related to the maximum-

likelihood ratios (14). Note that dp(Zy, Zy) < — log(rp) is
equivalent to:

1/n*

n

pml(Zy, Zy) = | [[ pmlZelif). 2 lij1) | > 75,
ij=1

(17)

i.e,, Tp is in fact a threshold on the geometric mean of the
maximum-likelihood ratios. Now, since:

ky|W)pka|h) < klx kol
,max plkapkola) < max plhalr) max plkal2)
(18)

we have that 0 < pml(kj, ko) < 1 for any ky,kp € N.
From this, it follows that also ﬁ(Zx,Zy), the geomet-
ric mean of the maximum-likelihood ratios between the
blocks Z, and Zy takes values between 0 (very bad match)
and 1 (perfect match). Thus, the corresponding thresh-
old 7” should be chosen between 0 (no thresholding) and
1 (only accepting identical blocks). We found that the
choice ¥ = 0.55 works well in practice and thus we
use this value wherever the Poisson maximum-likeljhood
ratios are employed in this work. The reduced set S” and
the block stack Zf are defined analogously to S‘x and Z,,
respectively, just replacing Sy by SZ.

Since the denoising in 3D transform domain is designed
to remove AGWN, we still have to use the Anscombe
transform before applying 7 to the 3D block, i.e., the
estimated 3D block stacks (6) are replaced by:

VP =T (o (T (4(2D)))).

In other words, when using this strategy, the Anscombe
transformed data is used to fill the 3D block stacks with
the values of the matched blocks but not to determine the
positions of the matched blocks in the 3D stacks.

The weights w2 = N ! are again equal to the number
of non-zero transform coefficients after hard threshold-
ing the Anscombe transformed block stack in the 3D
transform domain. Accordingly, the basic estimate (8) is
replaced by:

(19)

Ny {
erXR Zk:1 WQYfk(y)

=L : (20)
erXR Zk=1 Wy XZ(S);)k (y)

£hasi .
> as1C (y) —

Here, f’f () is defined in analogy to (8). Also note that
due to the application of the Anscombe transform to the
3D block stacks in (19), the values of the basic estimate
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(20) after Poisson maximum-likelihood-ratio-based block
matching are still in the Anscombe transform domain.
Thus, the Wiener filtering iteration remains unchanged.

Adaptive non-local periodic block matching

Images of crystals at atomic scale acquired by electron
microscopy exhibit highly repetitious patterns of only a
few basic objects corresponding to the different types of
atoms. Therefore, such images are rich in self-similarity;
however, blocks of equal structure are typically not found
in local neighborhoods. Based on this observation, we
developed a periodic search strategy for non-local means
that is based on a Fourier analysis of the input image and
distributes small non-local search windows periodically
throughout the entire image [20]. In our previous work,
we found that a significant increase in both visual image
quality and of quantitative measures such as the PSNR can
be achieved using this periodic search strategy. Neverthe-
less, we also found that BM3D, even with local search, in
most cases still outperforms our proposed periodic search
non-local means. Still, the local search used in the origi-
nal BM3D filter is expected not to be well suited for most
electron microscopy images of crystals. Hence, we now
propose to combine our periodic search strategy for block
matching with the BM3D filter for electron microscopy
images. First, we recall the definition of the non-local
periodic search grid [20]:

nio(x) =x i=1,2,

niik x) = arg min

yeNyz (D @)
+ Ax; [ %%, i=1,2,
Sin o;

Nz (%) = U NNg’ (néq (n{q (x))) ﬂX.

k1,ka

dp(Zy, Zy)

(21)

Here, o1, az denotethe angles or directions of the peri-
odic pattern within the input image and Ax;, Axy the
spacings between the self-similar objects along those axes
and Ny is the size of the small local search windows (in
units of pixels). For an automatic estimation strategy of
these parameters from the input image, we refer to [20].
Note that the arg min expression causes an adaptive reset
of the search pattern that gives some robustness against
errors in both the estimation of the grid parameters and
slight variations of the periodic pattern within the image.

The search grid (21) is used to replace the local search
window Ny (x) in the set of matched blocks (3) in the
hard thresholding iteration and analogously in the Wiener
filtering iteration with the sets:
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mht .= [y € Mz () ¢ dp(Zu Zy) < rht} ,
. ' (22)
My = |y € myr @)« dp(Ex Fy) < 7).

Here, the super scripts ht and wie refer to the first and
second stage involving hard thresholding and Wiener fil-
tering. In this paper, we have used small N x N local
search windows of size Ng = 5. We found that this choice
retains reasonable computational efficiency, while being
large enough (about 0.1 to 0.25 times as small as the atoms
in the images we used) to correct the positions of the non-
local periodic search steps within each atom. IZIECIt and I:I;’CVie
are defined analogously to S,. Note that for crystals at
atomic scale the self-similarity within the corresponding
image is so rich that with a non-local search like this, for
nearly all x € Xg, one finds many more than Nsp blocks
that are similar to the reference at «, i.e., Ny = N3p holds
for nearly all x € Xp.

In order to reduce the computational cost of the non-
local periodic search, we made the following technical
adjustments to its implementation in comparison with its
description in [20] and the expression (21). First, for each
reference point x among the two directions «; and oy,
the corresponding axis with the largest intersection with
the image X is declared to be the primary search axis.
Then, after performing one step along the primary search
axis, non-local periodic search steps along both positive
and negative directions of the secondary search axis are
carried out only until the image boundary is reached.
This process is repeated until the image boundary is also
reached along the positive and negative direction of the
primary search axis. On the one hand, this implemen-
tation requires less computational cost than computing
the whole set of points within the image that could be
reached by steps along either of the two periodicity axes,
while on the other hand, it still gives a sufficiently large
subset of all of these points. This efficient periodic block-
matching strategy increases the computational cost by a
factor of about 1.5 to 2 (depending on the density of the
atoms within the image) compared to our implementation
of BM3D with local block matching. Note that due to the
overhead produced by unoptimized parts of our imple-
mentation this relative comparison may not be exact.
Nevertheless, we believe that the factor between the run-
times of local and periodic block matching would be of the
same order of magnitude in optimized code as well.

Uniform distribution of block estimates

A key difference between the non-local means algorithm
and BM3D is that the estimated intensity f (y) in some
pixel y € X does not only depend on the similarity
between the block Z, (if y € )%) and other blocks Z,,
x € X, in the image but also on the similarity between
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overlapping blocks Z,y 2 y, &' € X, and other blocks Zy.
This is due to the mechanism in BM3D that aggregates the
intensities of all pixels of all denoised blocks at their orig-
inal positions in order to obtain the estimate (8) from the
overcomplete representation given by the collection of all
block estimates. As noted before, there can even be differ-
ent block estimates corresponding to the same position, if
they originate from denoised 3D block stacks matched to
different references. Therefore, when applying the BM3D
filter, the preciseness of the intensity estimate f’ (y) may
not only depend on the block distances of all references
to their matched blocks but also on the distribution of
the positions corresponding to all block estimates. For
adaptive periodic block-matching, this is:

W) =Y Y Xz, 0.

xeXR x/eﬁx

(23)

Analogously, we define .4 for local block match-

ing but with IT, replaced by Sy Figure 2 shows these
quantities for both the hard thresholding and Wiener fil-
tering iteration. The images B and D in Figure 2 reveal
that the periodic block matching may lead to a signifi-
cant concentration of block estimates in certain regions.
Consequently, the number of block estimates has to be
very low elsewhere. The effect is much weaker with the
local block matching (cf. Figure 2A,C) since the local
search windows naturally restrict blocks from one area to
be matched to a small set of blocks within their neigh-
borhood, which prevents the number of aggregates to
concentrate significantly in one specific area of the image.

Here, we propose a modification to the adaptive peri-
odic block-matching strategy that aims at steering it
towards a more uniform distribution of the positions of all
block estimates as observed for the original local block-
matching method. The task is to maximize the minimal
number of aggregates while still choosing blocks with least
distances during block matching. As we consider block
similarity to be the more important than uniformity of the
block estimates, we still primarily sort the matched blocks
by block distance. However, we create additional degrees
of freedom by choosing a slightly larger limit N3, > N3p
of the number of matched blocks than before. This gives
larger sets IT} = (Hx)i\fl, where N} = min{#(Il,), N3p}.
Reducing these sets for all reference points x € Xz to the
final size N, while driving the distribution of the resulting
block estimates throughout the image towards a more uni-
form one gives rise to the following optimization problem:

(H’I{ *)xexR = argmax min Z Z xz, ), (24)

X
(H;)xeXR eP ye xeXR x/el'l;‘
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T
and nfyqr
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Figure 2 Number of aggregates for local and periodic block matching. Number of aggregates naqyq, i.e, after local block matching (A) and (B)
i.e,, after periodic block matching (B) and (D) for hard thresholding (A) and (B) and Wiener filtering (C) and (D) applied to the gallium

where P = {(IT))xexg : [T, C IT%, #(I1,) = Ny, Vx € Xz}
denotes the feasible set. Unfortunately, this optimization
problem is of combinatorial type and due to its global cou-
pling of all reference coordinates would be computation-
ally too costly to solve. Hence, we propose the following
simplification of the uniform block matching through an
iterative procedure.

Algorithm 1 Spatially uniform distribution of best-
matched blocks

1: I\_/IJLCJ1 = ﬁxl

2. fori=2,...,#Xg) do

3: ﬁ}; =0
4 repeat
i—1
5 x*i=argmaxmin | xz, )+ > xz,O)
xel‘I;i\l:IE. e j=1 x’el‘[ﬁ
6 Y « 1Y u (x*}
. U
7: until #(T1 ;) = N,
8: end for

Here, the reference coordinates have been numbered
Xg = (xl, ... ,x#(XR)) and block matching is performed for
one after the other in an iterative fashion. In this paper, we
use the number of local Ny x NY search windows as the

limit ;‘D. Note that as the number of search window is

dependent on the reference position x € Xp, so is the new
limit N3y = N3p(x), unlike the limit N3p chosen before,
which is independent of x. This choice can be motivated
as follows: if the adaptive periodic search succeeds in plac-
ing the local search windows roughly according to the
pattern of the observed crystal, then for a reference pixel
within an atom, each local search window within the cor-
responding similarity search should overlap a similar part
of another atom. Therefore, we expect to find at least one
well-matching block per local search window. Note that
we define n!/__ in analogy to (23) but with IT, replaced

aggr
by 1.

Results and discussion

We have presented several modifications of the original
BM3D filter as it was proposed by Dabov et al. [24],
including the extension to Poisson noise removal due to
Mikitalo and Foi [26]. The main intention was to improve
the filter within the context of electron microscopy images
of crystals at atomic scale. To ensure a clear understanding
of which modifications or settings were used to produce
the results presented in this section, we use the following
prefixes:

e np-x normal profile and Anscombe-based three-step
procedure
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e pml-x: Poisson maximume-likelihood ratio-based
block matching within hard thresholding iteration

® -lx:local block matching with Ng = 39

e -7 adaptive periodic block matching with N7 =5

— *-71Nx: selection of N3p best-matched blocks
with thresholds N3p = 16 (HT) and N3p = 32
(Wiener)

— %7 Ux: uniformly distributed selection of N3p
blocks from NgD best-matched blocks as in
Algorithm 1

® -%11: block sizeis n x n

A commonly used quantitative measure to compare the
image quality after application of different image pro-
cessing algorithms is the PSNR of the corresponding
estimates:

2
PSNR(A, A) = 1010%10( : maxxex()n(x))A 2>‘
X 2oxex A (®) — A(%))

(25)

This quantitative measure requires the knowledge of the
underlying ground truth, ie., the exact average counts
A(x) in each pixel x € X, which is not available in
experimental STEM images. Therefore, we have simu-
lated STEM images of various materials using the frozen
phonon multislice algorithm [32] to obtain representative
ground truth micrographs that are free of Poisson noise
(cf. Figure 2A,C,E,G). To make these images represen-
tative of experimental images, typical image distortions
that are caused by instabilities of the sample and electron
beam during experimental STEM image acquisition have
been artificially introduced to these simulated images.
Known material crystallographic data was used to create
the gallium nitride and silicon atomic models. Molecu-
lar dynamics was used to calculate the silicon dislocation
atomic model [8]. In order to compare the algorithms
at different noise levels, we scaled the intensities of the
ground truth images to different average electron counts
per pixel before applying random Poisson noise. This
simulates the usage of different beam currents, result-
ing in different electron doses. Examples of Poisson noise
affected versions of the simulated images can be found in
Figure 3B,D,EH.

In this work, we use our implementation of BM3D
with local search as the ‘original’ BM3D benchmark. This
comparison is justified, since we verified our implementa-
tion against the implementation provided by the original
authors [29] and found the results to be consistent both
in terms of the resulting peak signal-to-noise ratios and
a visual comparison of the retrieved estimates. Note that
our implementation even gives slightly better PSNRs on
most images, since it uses a full local search for each
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Figure 3 Simulated STEM images. Example frames from simulated
series of electron microscopy images. Left column shows ground
truths including STEM scan distortions but no shot noise. Crystals
with average detected electrons per pixel are as follows: (A) perfect
gallium nitride (0.66 to 3.47), (C) and (E) perfect silicon (0.28 to 1.94)
and (0.37 t0 6.68), (G) silicon with dislocation (1.4 to 9.7). Right column
shows the same images with Poisson shot noise. The respective peak
electron counts per pixel are as follows: (B) 12, (D) 9, (F) 21, and (H) 15.

reference coordinate instead of reducing the size of the
local search window based on previous block-matching
results, as it was suggested in [24]. However, due to both
this fact and the lack of code optimization, our implemen-
tation is currently also slower by a factor of between 5 and
10, depending on the input.

At http://nmevenkamp.github.io/ELMA/, we provide a
current version of our proposed method as C++ source
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code, as well as Windows and MacOSX applications with
graphical user interface.

Adaptive non-local periodic block matching

A major goal of this work is to show that local block
matching, with a search window small enough to warrant
practical efficiency, is not able to properly benefit from
globally recurring self-similar features. Instead, in such
cases, real non-local block-matching strategies are able to
exploit the capabilities of the BM3D filter to a significantly
higher extent.

We compare the PSNRs of the BM3D estimates for local
block matching to those attained with our proposed non-
local adaptive periodic block matching in Table 1 for the
block sizes n = 8 and n = 16. The results clearly show that
our proposed non-local periodic block matching leads to
significantly better estimates (up to 4 dB gain) than the
local block matching for all input images, even in the case
of the silicon lattices with a defect, where the atoms are
not arranged in a perfectly periodic pattern. This shows
that the adaptive reset within the small local search win-
dows defined in (21) yields sufficient robustness to cope
with slight deviations from a perfect periodic structure of
the input image. Figure 4 compares the resulting visual
image quality when using local (left column) or periodic
(right column) block matching within the BM3D filter.
Comparing with the ground truths in Figure 3, one sees

Table 1 PSNRs of local vs. adaptive periodic block matching
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that both the local and the periodic block-matching meth-
ods smooth out the scan distortions. This effect is due to
the non-local averaging of blocks extracted from essen-
tially identical atoms that just differ slightly in shape due
these distortions. Since the local distortion of a scan line
with respect to the atom center is mostly random, these
distortions cancel out on average. In Figure 4A,B,C,D,E,E,
one sees that for the cases of perfect gallium nitride and
silicon lattices at very low PSNR, the adaptive periodic
block matching leads to a significantly better estimate
than the local block matching. The example shown in
Figure 4G,H, where a silicon lattice with a dislocation was
used, shows visually that even in the regions where the sili-
con atom pairs are slightly tilted, and where therefore self-
similarity does not coincide with the global periodic pat-
tern of the crystal, our proposed adaptive periodic block
matching is robust enough to still find well-matching
blocks. The denoised images of the silicon lattice with
a dislocation indicate that non-local averaging does not
noticeably affect the orientation of the silicon atoms
around the dislocation, despite the fact that most silicon
dumbbells within the image have a vertical orientation.
Comparing the two middle columns with the two right
columns in Table 1, one clearly sees that using the larger
block size n = 16 consistently yields significantly better
results than using # = 8. Note that there is one exception:
the silicon lattice with dislocation at lowest PSNR (2.7

Input Peak PSNR [dB] np-18 np-7 N8 np-116 np-7 N16
Silicon (disloc.) 6 2.70 17.96 18.47 15.07 17.16
Silicon 6 3.62 20.60 21.65 20.68 23.39
Gallium nitride 7 6.11 21.71 23.26 20.53 24.76
Silicon 9 6.65 22.25 23.92 2260 26.15
Silicon 11 9.63 23.59 24.02 2523 26.00
Silicon (disloc.) 11 9.72 23.78 24.39 25.30 26.64
Gallium nitride 12 10.15 24.30 26.13 24.72 27.90
Silicon 18 12.58 2576 26.74 26.65 27.99
Silicon (disloc.) 15 12.73 25.68 26.34 26.64 27.65
Gallium nitride 17 13.25 26.18 27.86 26.51 29.04
Silicon 21 13.64 26.51 27.80 26.62 28.86
Silicon 21 15.12 27.05 27.74 27.91 28.76
Silicon 34 16.68 28.23 29.53 28.25 30.25
Silicon (disloc.) 49 19.81 2949 29.94 29.90 30.20
Silicon (disloc.) 89 22.66 31.16 31.48 31.53 31.77
Silicon (disloc.) 92 2273 31.14 31.39 31.50 31.67
Silicon 88 22.75 31.25 31.56 31.60 31.80
Silicon 88 22.88 31.40 31.74 31.78 31.99
Gallium nitride 95 2323 32.28 33.58 3230 33.89

A comparison between local (np-I%) and periodic (np-7r Nx) block matching with block sizes n=8 (middle columns) and n=16 (right columns). The best result within
each row and the corresponding columns (separated by wide space) is in bold face.
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Figure 4 Comparison between local and adaptive periodic block
matching. Denoised versions of the Poisson noise affected images
from Figure 3 after application of local block-matching BM3D (A), (C),

(E), and (@) and non-local adaptive periodic block-matching BM3D
(B), (D), (F), and (H). The block size is Ny = 16 for both methods.
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dB). However, the denoised images shown in Figure 5 con-
firm the importance of a larger block size for robust block
matching, especially within the low electron count regime,
as the estimates for n = 16 (cf. Figure 5E,F) show an image
quality far superior to the ones for n = 8 (cf. Figure 5C,D).
Again, regarding the case of the silicon lattice with dislo-
cation (left column in Figure 5), one sees that the shapes
of the atoms are still estimated more correctly using the
larger block size n = 16 (cf. Figure 5E). Notice however,
that there appears to be a blurring of whole sub-regions
within the estimate for n = 16, which is not present for

Silicon (dislocation) Silicon

noisy

periodic BM, 8 x 8 blocks

periodic BM, 16 x 16 blocks

uniform BM, 16 x 16 blocks

Figure 5 Block matching with different block sizes and (non-)
uniform distribution of block estimates. (A) Noisy silicon lattice
with dislocation (peak 6, PSNR: 2.70 dB), (B) noisy perfect silicon
lattice (peak: 6, PSNR: 3.62 dB), (€) and (D) corresponding estimates
from adaptive periodic block-matching BM3D using Ny = 8, (E) and
(F) using N1 = 16, and (G) and (H) using Ny = 16 and uniform
distribution of block estimates.

n = 8 (cf. Figure 5C). This effect will be discussed in the
next section.

Uniform distribution of block estimates

As described earlier, the adaptive periodic block match-
ing, due to its true non-local similarity search, may lead
to local concentrations of the number of available block
estimates, thereby leaving fewer block estimates for other
regions of the image. This effect can lead to an overall
poor image quality in the image regions with few block
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Figure 6 Number of aggregates for uniform periodic block matching. Number of aggregates n
matching for (A) hard thresholding and (B) Wiener filtering applied to the gallium nitride lattice in Figure 3.

678I- - | |
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estimates, as was observed in the case of the silicon lattice
with dislocation in Figure 5E. In comparison to this, we
see in Figure 5G,H the estimates retrieved from the uni-
form block-matching strategy described earlier. Figure 5G
shows an example of the improvement obtained by steer-
ing the distribution of the number of available block
estimates towards global uniformity. Exemplary distribu-
tions of the number of aggregates after uniform periodic
block matching are shown in Figure 6 for the gallium
nitride lattice in Figure 3B. In Table 2, we compare our
proposed plain adaptive periodic block matching versus

the one with additional uniform distribution of the num-
ber of available estimates per pixel. First of all, the previous
anomalous result for the silicon lattice with dislocation
at lowest PSNR (2.7 dB), in which a block size of n =
8 outperformed the larger block size of » = 16 using
plain adaptive periodic block matching, is resolved. Fur-
thermore, the results in Table 2 show that for both the
block sizes n = 8 and » = 16 uniform block matching
increases the quality of the estimate in the majority of the
cases, compared to plain periodic block matching with-
out this addition, except for the silicon dislocation images

Table 2 PSNRs of periodic vs. uniform periodic block matching

Input Peak PSNR [dB] np-7 N8 np-7 U8 np-7 N16 np-7 U16
Silicon 6 3.62 21.65 22.14 23.39 23.80
Silicon 9 6.65 2392 24.21 26.15 26.21
Silicon 1 9.63 24.02 24.19 26.00 2562
Silicon 18 12.58 26.74 26.79 27.99 28.02
Silicon 21 15.12 27.74 27.81 28.76 28.75
Silicon 21 13.64 27.80 27.94 28.86 28.89
Silicon 34 16.68 29.53 29.56 30.25 30.28
Silicon 88 22.75 31.56 31.68 31.80 31.94
Silicon 88 22.88 31.74 31.84 31.99 32.15
Gallium nitride 7 6.11 23.26 23.78 24.76 24.82
Gallium nitride 12 10.15 26.13 26.49 2790 27.99
Gallium nitride 17 1325 27.86 28.09 29.04 28.99
Gallium nitride 95 2323 33.58 3348 33.89 3358
Silicon (disloc.) 6 2.70 1847 19.53 17.16 19.50
Silicon (disloc.) 11 9.72 2439 24.88 26.64 26.55
Silicon (disloc.) 15 12.73 26.34 26.50 27.65 2744
Silicon (disloc.) 49 19.81 29.94 29.87 30.20 30.14
Silicon (disloc.) 89 22,66 31.48 3148 31.77 31.75
Silicon (disloc.) 92 22.73 31.39 31.44 31.67 3167

Adaptive periodic (np-7 N) and uniform adaptive periodic (np-r Ux) block matching with block sizes n=8 (middle columns) and n=16 (right columns). The best result
within each row and the corresponding columns (separated by wide space) is in bold face.
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with n = 16. Our proposed threshold for the number of
blocks that are regarded equally well matched (the num-
ber of non-local search windows) is not well suited for
the rotated atoms near the dislocation. Therefore, for such
images, reduced reliability is expected from the uniform
block-matching approach.

Direct block matching for Poisson noise statistics
Table 3 shows a comparison of (a) the PSNR of estimates
retrieved by application of the BM3D filter in a three-
step procedure using the Anscombe transform with (b)
replacing the L2-distances in the Anscombe transformed
data within the block matching of the hard threshold-
ing iteration by the Poisson maximum-likelihood-based
distances within the original data. The results indicate
that at low PSNR of the input image, employing Poisson
maximum-likelihood ratios is slightly better than using
the L2-distance within the Anscombe transformed data.
For intermediate PSNR however, there seems to be very
small or no difference between the two distance measures.
Although the improvement so far is small, we have
just modified a small part of the BM3D algorithm to
work directly on the original Poisson statistics, namely the
block-matching part within the initial hard thresholding
iteration. The results we presented in [20] show a more
significant advantage of the Poisson maximum-likelihood
ratio-based similarity measure over the Anscombe trans-
formed L?-distances. However, this was for the NLM
algorithm, where in the case of the Poisson maximum-
likelihood ratio-based similarity measure, no Anscombe
transform of the input data was required at all. There-
fore, we believe that future research towards adopting the
whole BM3D algorithm directly to Poisson noise statis-
tics may lead to more substantial improvements of the
reconstruction in the extreme low-count regime.

Atomic column detectability, position precision, and
reconstruction fidelity

As mentioned in the beginning, the positions of the atoms
are an important quantity that material scientists would
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like to extract from atomic-resolution electron micro-
graphs. In the following, we analyze how well the positions
can be estimated on the noisy images referred to in the
previous sections and by how much our proposed denois-
ing algorithm improves this estimation.

In order to extract the atom positions, we adopt a
two-step procedure: first, the individual atoms within the
image are detected through segmentation and the geo-
metrical centers of the resulting atomic regions are used
as an initial guess for the atom centers; second, a 2D Gaus-
sian function (or a sum of two 2D Gaussian functions in
the case of the silicon lattices) is fit on a small area around
each atomic region via non-linear regression in order to
determine the final estimate of the position of each atom.
For further details regarding this procedure, we refer to
[2,33].

The detectability of the atomic columns in the noisy and
denoised images can be assessed by the detection fraction.
It is defined as follows. Let ¢; = ¢;(A) €[1,N] x[1, M],

i =1,...,N, denote the centers of the atoms as detected
from the ground truth A and ¢; = ¢;(A) €[1,N] x[1, M],
j = 1,...,N; the ones detected from the corresponding

noisy (or denoised) image A, using the same atom-finding
procedure as described above. Furthermore, let Acpjn =
min;j—1, n; |¢; — ¢j| denote the shortest inter-atomic dis-
tance within the centers detected from the ground truth.
Then, the detection fraction is defined as the fraction
of atoms detected in the ground truth, which could be
matched to a corresponding atom detected in the noisy
(or denoised) image:

#({iefl,...,Na}: min | — &l <3 Acmi
({ { 3} j:l,“.,N;Ll i /| 2 mm})

A.,i =
o+ (A, 1) N

(26)

Here, the min expression selects the atom detected in
the noisy (or denoised) image, which is nearest to the

Table 3 PSNRs of Anscombe and L2 distance based block similarity vs. Poisson maximum-likelihood ratios

Input Peak PSNR [dB] np-t N8 pml-r N8 np-t N16 pml-z N16
Silicon (disloc.) 6 2.70 18.46 18.59 17.29 17.48
Silicon 6 3.62 21.63 21.81 2341 23.59
Gallium nitride 7 6.11 23.24 23.25 24.80 24.84
Silicon 9 6.65 2392 24.07 26.15 26.22
Silicon 11 9.63 24.02 24.06 26.00 2592
Silicon (disloc.) 1 9.72 24.39 24.50 26.64 26.55
Gallium nitride 12 10.15 2613 26.19 27.90 27.91

A comparison between non-local adaptive periodic block matching performed using L? distances in the Anscombe transformed domain (np-7 Nx) and Poisson
maximume-likelihood ratios of the true electron counts (pml-7 Nx) with block sizes n=8 (middle columns) and n=16 (right columns). The best result within each row

and the corresponding columns (separated by wide space) is in bold face.
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one detected in the ground truth and the comparison
with Acpin ensures that atoms are only matched if their
distance is less than half the minimum inter-atomic dis-
tance. The latter is required for an unambiguous corre-
spondence. Table 4 gives the detection fractions for noisy
and denoised versions of low dose examples of perfect gal-
lium nitride and silicon lattice images, as well as images
of silicon lattices with a dislocation, with peak electron
counts in the range of 6 to 49 electrons per pixel, corre-
sponding to incident electron doses in the range of 0.55 to
28.47 C/cm?. These are low electron doses for inorganic
materials, which is the main application intended for the
algorithms presented in this paper. For organic and bio-
logical samples, however, a low electron dose is on the
order of 0.01 C/cm?. The detection fraction is very small
for the lower dose noisy images (0.55 to 5.68C/cm?), as
well as for the local block-matching BM3D estimate of
the lowest dose gallium nitride (1.54 C/cm?) and silicon
dislocation (00.55 C/cm?) lattices. For the other images
(especially the silicon lattice), the detection fraction is sig-
nificantly increased by denoising the image (even with
local block matching). Furthermore, the periodic search
BM3D method achieves detection fractions near or equal
to 100% in all cases, except the lowest dose silicon disloca-
tion lattice. In terms of the detection fraction, the uniform
periodic block matching is superior to plain periodic block
matching. While the difference is slight in most cases (up
to 1%), the detection fraction is significantly increased by
uniform block matching on the two lowest dose images,
namely from 94.2% to 98% on the perfect silicon lattice
(0.79 C/cm?) and from 48.4% to 92.5% on the silicon lat-
tice with dislocation (0.55 C/cm?2). Note that the detection
fraction alone is not sufficient to assess the quality of the
atomic column detection, as can be seen from the follow-
ing example: say that due to the noise or poor quality of the
image, the segmentation falsely detects many more atoms
within the noisy (denoised) image than in the ground truth
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and that some of them are, by coincidence, near some
of the atoms within the ground truth. In this case, the
detection fraction could still be large. In order to cover
this issue, we additionally give corresponding misdetection
fractions in Table 5:

p—(h i)
N; —# ({L €{l,...,N;}: min_|¢;—¢l <%Acmm}>
]:1,...,1\[)'L

N;

(27)

These specify the fraction of atoms detected from the
noisy (denoised) image that could #not be matched to any
of the atoms detected from the ground truth. As seen
in Table 5, these fractions are zero, except for the nois-
iest input images (6 to 15 peak electrons/pixel) and the
local block-matching BM3D estimate of the silicon images
with doses 0.79 and 7.85 C/cm?, as well as the lowest
dose silicon dislocation image (0.55 C/cm?). Note that
for the periodic block-matching BM3D the misdetection
fractions are zero in all cases, except for the lowest dose
silicon dislocation image. While the local block-matching
BM3D has a misdetection fraction of 100% in this case,
the periodic and uniform periodic block-matching BM3D
methods achieve misdetection fractions of 12% and 4%,
respectively.

A known quality measure for the atomic column posi-
tion estimation is the so-called precision. It is defined
as the standard deviation of the inter-atomic distances
and ideally should be as small as possible for perfect
single crystal samples because all the inter-atomic dis-
tances should be identical. In STEM, the precision is often
regarded separately parallel and perpendicular to the scan
(which is horizontal and vertical for all of the images here).
However, we just intend to show that denoising improves

Table 4 Detection fraction (26) of the noisy (denoised) images

Input Peak Dose [C/cm?] oy np-116 np-m N16 np-r U16
Silicon (disloc.) 6 0.5476 0.0238 0 0.4841 0.9246
Silicon 6 0.7853 0.0192 0.9231 0.9423 0.9808
Gallium nitride 7 1.5400 0.1333 0.1444 1 1
Silicon 9 1.5706 0.2203 1 1 1
Silicon (disloc.) 1M 2.8064 0 0.9927 0.9927 0.9927
Gallium nitride 12 3.8499 0.0105 0.9684 0.9895 1
Silicon (disloc.) 15 5.6812 0.9818 1 1 1
Silicon 21 7.8530 1 1 1 1
Silicon 34 15.7061 1 1 1 1
Silicon (disloc.) 49 284745 1 1 1 1

Specifies the fraction of atoms detected from the ground truth for which a corresponding atom in the noisy (denoised) image was detected as well. The best result in

each row is in bold face.
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Table 5 Misdetection fraction (27) of the noisy (denoised) images
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Input Peak Dose [C/cm?] p— np-116 np-r N16 np-r U16
Silicon (disloc.) 6 0.5476 0.4000 1 0.1223 0.0412
Silicon 6 0.7853 0.8000 0.0204 0 0
Gallium nitride 7 1.5400 0.2000 0 0 0
Silicon 9 1.5706 0.2353 0 0 0
Silicon (disloc.) 11 2.8064 n/a 0 0 0
Gallium nitride 12 3.8499 0 0 0 0
Silicon (disloc.) 15 56812 0.0218 0 0 0
Silicon 21 7.8530 0 0.0189 0 0
Silicon 34 15.7061 0 0 0 0
Silicon (disloc.) 49 284745 0 0 0 0

Specifies the fraction of atoms detected from the noisy (denoised) image for which no corresponding atom in the ground truth could be found, with the value 'n/a’
indicating that not a single atom could be detected in the noisy image. The best result in each row is in bold face.

the quality of the atomic column detection. Hence, we
simply regard the total precision:

1 Nax 1 Nay
Precision(A)= | — ) (Ax;—Ax)2 + — (Ay; — Ay)?,
NAx ; NAy ;

(28)

where Nay, Npy are the number of, respectively, hori-
zontal and vertical inter-atomic distances between neigh-
boring atoms detected in the image A Axj, Ayj, i =
1,...,Nax, j = 1,...,Nay are the corresponding dis-
tances and Ax, Ay are their mean values, respectively.
In Table 6, the precision, in picometers, is given for all
images used in the atomic column detectability analysis
above, except for the silicon dislocation images, where this
measure is not meaningful due to the aperiodicity of the
true atom positions. For images, where not a single pair
of neighboring atoms could be detected, the precision is
denoted by ‘n/a’ Table 6 shows that this is the case for the
noisy images with peak electron counts in the range of 6 to
12, as well as the local block-matching BM3D estimate for
the lowest dose gallium nitride lattice (1.54 C/cm?), which
is in line with the small corresponding detection frac-

tions seen in Table 4. For all other images, the according
detection fractions in Table 4 are above 90% and the mis-
detection fractions in Table 5 are below 2%, which means
that the precision is of relevance in these cases. Revisiting
Table 6, we see that, except for the moderate-dose gal-
lium nitride image (3.85 C/cm?), where the precision is
already quite high after local block matching, our pro-
posed (uniform) periodic block-matching BM3D is able to
consistently enhance the precision by a factor of two, com-
pared to local block-matching BM3D. Even for the lowest
dose input (0.79 C/cm?), we observe a precision below 15
pm, which is the best precision reported for single shot
STEM images before [6]. However, our high precision is
obtained in a simulated image, and to be completely rel-
evant, it must be confirmed in experimental images. In
the case of the gallium nitride lattice (3.85 C/cm?), where
individual atoms could not reliably be detected in the
noisy input, the uniform adaptive periodic BM3D esti-
mate achieves a precision of below 7.5 pm, improving the
precision by a factor of two compared to those reported
in [6].

We conclude the ‘Results and discussion’ section with
the analysis of another quality measure for the atom detec-
tion, which we call fidelity. We define this measure as the

Table 6 Precision (28), in picometers, of the noisy and denoised images

Input Peak Dose [C/cm?] Precision [pm] np-116 np-r N16 np-r U16
Silicon 6 0.7853 n/a 28.06 12.18 14.34
Gallium nitride 7 1.5400 n/a n/a 11.03 10.63
Silicon 9 15706 n/a 21.38 9.63 9.22
Gallium nitride 12 3.8499 n/a 9.98 7.65 7.26
Silicon 21 7.8530 13.79 10.23 4.65 4.85
Silicon 34 15.7061 9.30 8.70 4.41 461

Total standard deviation of the horizontal and vertical inter-atomic distances, with the value ‘n/a’ indicating that no neighboring atoms could be detected in the noisy

(denoised) image. The best result in each row is in bold face.
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root mean square of the distances between corresponding
atoms, as detected in both the ground truth and the noisy
(denoised image):

N

N, ZT in | oy >
1 min C;i — Cj .
iACmi“ ]’=1,...,N}: i ]

Fidelity(A, 1) == | ———
P+ ()"!)") i=1

(29)

As in the definition of the detection fraction (26), here
the min expression selects the nearest atom and the
thresholding operator Y1 ,, ensures that atoms are only

2 min

matched if their distance is less than half the minimum
inter-atomic distance. Note that unlike accuracy, where
the exact atom positions used to simulate the ground
truth would replace the detected ground truth centers
¢;, the fidelity does not measure the error in the actual
positions of the atomic columns. Instead, it measures
how much the atomic column detection is influenced by
the addition of shot noise and, more importantly, by the
reconstruction. Looking at the corresponding values given
in Table 7 for the examples discussed before, we see the
same effect that for the very noisy input images (6 to 12
peak electrons/pixel) the fidelity is very low. Again, the
local block-matching BM3D estimates show a significantly
increased fidelity compared to the noisy input images.
Furthermore, except for the moderate dose gallium nitride
(3.85 C/cm?) and silicon dislocation (2.8 to 28.47 C/cm?)
images, the fidelity is also enhanced by a factor of two
by using our proposed (uniform) periodic block match-
ing instead of the local block-matching strategy. For the
single shot STEM images with an incident electron dose
above 1.57 C/cm?, we achieve sub-picometer fidelity by
our proposed BM3D filter with uniform adaptive periodic
block matching. Note that this sub-picometer fidelity is
also observed on the aperiodic silicon lattices with a dis-
location, indicating that the adaptiveness of the proposed
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periodic search strategy is able to cope with localized
irregularities in the crystal structure. Overall, this result
shows that the denoising with our proposed method does
not introduce artifacts exceeding the sub-picometer level.
Again, it should not be taken as evidence of sub-picometer
precision or accuracy in locating the atom columns in the
reconstructed images, since it does not account for the
STEM instabilities built in to the ground truth images.
Removing instabilities still requires an approach like non-
rigid registration of a series of images [2].

A comparison with linear filters

In practice, simple linear filters, such as the median or
low-pass Wiener filter, are still commonly used for denois-
ing in electron microscopy. In the following, we show that
such filters provide a substantially worse denoising per-
formance than the proposed modified BM3D method. In
particular, we demonstrate that the application of such lin-
ear filters does not enable a proper analysis of extremely
noisy images (less than 10 peak electron counts per pixel).
We used the MATLAB functions medfilt2 for median
filtering and wiener2 for low-pass Wiener filtering to
produce the results presented here. In both cases, default
parameters were used, which results in a windows size of
3 x 3 pixels and, in case of the Wiener filter, the noise
power being automatically estimated.

Figure 7 shows denoised version of the gallium nitride
and perfect silicon lattices from Figure 3 after application
of a median filter (left column) and a low-pass Wiener
filter (right column). A comparison with the correspond-
ing estimates provided by our proposed method shown in
Figure 5B,D reveals that the visual quality after denoising
is much better when the modified BM3D method is used
instead of either the median or low-pass Wiener filter.

A quantitative analysis based on the measures described
above is shown in Table 8. The best results among the lin-
ear filters were achieved in the case of the noisy gallium

Table 7 Fidelity (29), in picometers, between ground truths and noisy (denoised) images

Input Peak Dose [C/cm?] Fidelity [pm] np-116 np-7 N16 np-r U16
Silicon (disloc.) 6 0.5476 17.81 n/a 271 1.66
Silicon 6 0.7853 8.59 2.77 1.32 1.29
Gallium nitride 7 1.5400 17.09 343 1.16 1.16
Silicon 9 15706 7.75 157 0.74 0.73
Silicon (disloc.) 1 2.8064 n/a 0.65 0.50 0.54
Gallium nitride 12 3.8499 554 0.70 0.59 0.57
Silicon (disloc.) 15 5.6812 1.26 049 0.38 043
Silicon 21 7.8530 0.98 0.73 0.35 037
Silicon 34 15.7061 0.56 0.53 0.28 0.28
Silicon (disloc.) 49 284745 042 0.30 0.27 0.29

Root mean square of the distances between atom centers as detected in the noisy (denoised) image and the ground truth, with the value ‘n/a’ indicating that no
neighboring atoms could be detected in the noisy (denoised) image. The best result in each row is in bold face.
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median filter

Gallium nitride

Silicon

C

Figure 7 Median and Wiener filter applied to noisy images. Gallium nitride image (cf. Figure 3B) denoised with (A) median filter and (B)
low-pass Wiener filter, and silicon image (cf. Figure 3D) denoised with (C) median filter and (D) low-pass Wiener filter.

low-pass Wiener filter

nitride lattices processed with a median filter. Here, all
atoms were correctly detected, i.e., the detection fraction
is one and the misdetection fraction is zero. However,
note that the recorded precisions in these two cases are
worse by a factor of about two compared to those achieved
with the proposed modified BM3D. In the other cases,
i.e., where the median filter was applied to the silicon
lattices and in all cases where the low-pass Wiener fil-
ter was used, the results indicate that atom detection is
not feasible in the denoised images at all, which is either
due to the detection fraction p4 being significantly less

Table 8 Performance of median and Wiener filters

than 100% or the misdetection fraction p_ being signifi-
cantly larger than 0% or both. The proposed BM3D filter
achieved detection fractions of 100% on all noisy perfect
crystal images except for the lowest SNR silicon lattice
and misdetection fractions of 0% in all periodic crystal
cases. In the case where the detection fraction after appli-
cation of the modified BM3D filter is just 98%, the median
filter yields a similar result with 96%. However, the mis-
detection fraction after application of the median filter is
81%. The low-pass Wiener filter yields worse results, with
a detection fraction of 4% and a misdetection fraction of

Input Peak Dose [C/cm?] P+ p— Precision [pm] Fidelity [pm]
Silicon 6 0.7853 0.96 0.81 3873 2.86
. Gallium nitride 7 1.5400 1 0 19.01 136
Median
Silicon 9 1.5706 0.83 0.06 29.81 246
Gallium nitride 12 3.8499 1 0 12.07 0.74
Silicon 6 0.7853 0.04 0.5 n/a 944
. Gallium nitride 7 1.5400 0.19 0.06 n/a 14.69
Wiener
Silicon 9 15706 0.02 0.67 n/a 12.81
Gallium nitride 12 3.8499 0 n/a n/a n/a

Detection fraction (26), misdetection fraction (27), precision (28), and fidelity (29) (both in picometers) of denoised images after application of a median filter (top

rows) and a low-pass Wiener filter (bottom rows).
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50%. Overall, the results indicate that the proposed mod-
ified BM3D method is far superior to simple linear filters
such as the median or Wiener filter in terms of both atom
detectability and precision of atom positions.

A remark on further quantitative measures

We are aware that other quantities like the intensity and
shape of atomic columns are also important for materi-
als science. In future work, we plan to conduct a survey
in this direction, especially treating the question whether
the non-local averaging procedure will be able to retain
different intensities in atomic columns of the same type,
thus enabling the determination of the number of atoms
in each column within the denoised image.

Conclusions

We proposed key modifications of the block-matching
and 3D-filtering algorithm, which were aimed at enhanc-
ing the filter when applied to atomic-resolution electron
micrographs of periodic crystals. We have shown that,
through the proposed modifications, the denoising per-
formance is significantly improved compared to the orig-
inal BM3D on all tested images. It also substantially out-
performs common linear filters such as median-filtering
and low-pass Wiener filtering. The major advances are
the adoption of a Fourier-based periodic similarity search
[20] within the non-local means setting to the BM3D
algorithm, as well as the treatment of an issue regarding
spatial block concentration, which only occurs in the new
BM3D setting. Furthermore, we showed that the proposed
filter with its uniform adaptive periodic block match-
ing, specifically tailored to perfect crystal structures, is
able to significantly enhance both visually and quantita-
tively the image quality of low-dose electron micrographs.
Quantitative measures of interest to the material science
community, namely atomic column detectability and posi-
tion precision, are significantly improved by application
of the new denoising algorithm, without the introduction
of artifacts such as false-positive identification of atomic
columns or shifts in the atomic column image positions
beyond the sub-picometer level.

The proposed algorithm for steering the spatial dis-
tribution of block estimates towards global uniformity
achieves a significant improvement over the periodic
block-matching BM3D for certain images. However, we
also observed cases where the results are slightly worse
compared to the periodic block matching without this
addition. Note that our uniform adaptive periodic block-
matching BM3D is still significantly better than the orig-
inal BM3D in all cases. Nevertheless, we plan to further
investigate this phenomenon. The goal is to find a strategy
that will at least sustain the quality of the estimate com-
pared to plain periodic block matching while improving it
in the majority of the cases.
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According to the results we presented for the case of a
silicon dislocation, the adaptiveness of the periodic block
matching copes fairly well with localized irregularities in
the crystal structure. Nevertheless, the proposed periodic
block matching is generally limited to the assumption of a
perfectly periodic crystal, which is usually of less interest
to material scientists than crystals with (possibly multi-
ple) defects or changes in the lattice orientation. Thus, we
plan to improve and properly extend the block-matching
strategy to these more complex geometries.

While the presented methods can be easily adopted to
a series of images and thus might directly enable the reg-
istration of a series of low-dose electron micrographs, we
expect a direct coupling of denoising and registration to
be superior. Developing such a combined algorithm and
analyzing its performance on series of low dose frames
will be a main goal of our future work.
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