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Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science.
Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of
sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a
common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data.
The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is
crucial to have a robust and dependable alignment method. In this paper, we develop a new alignment method
which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass
points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented
here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical
justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of

Background

Electron tomography has been a powerful tool in deter-
mining 3-D structures and characterization of nanopar-
ticles in the biological, medical, and materials sciences
[1-3]. The method is carried out by acquiring a series of
2-D projection images of an object and then using these
2-D projections to reconstruct the 3-D object. Using the
transmission electron microscope, these projections are
collected at a number of different orientations, typically
by tilting the sample about a fixed tilt axis [4], while other
dual axis tilting schemes also exist [5]. A demonstration
of the projection scheme is shown for a 2-D object in
Figure 1. We will focus only on the case of a single fixed
tilt axis in this paper, although our methods can easily be
translated to dual axis schemes.

Ideally, between two consecutive projections acquired at
nearby tilts of the sample, one would observe only a small
rotation of the projected image. However, due to unavoid-
able mechanical limitations, significant translation shifts
are present. Therefore, the projections must be aligned
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into a common coordinate system to be properly inter-
preted. Once the projections are aligned, they can then
be merged to approximate the 3-D structure of the sam-
ple. The alignment is a crucial part of the process, for the
resolution of the reconstructed 3-D structures are lim-
ited to the accuracy in the alignment. In this paper, we
demonstrate a new mathematically justified method for
the alignment based on the apparent motion of the center
of mass of many 2-D cross-sections of the sample.

Over the years, many traditional alignment techniques
have been developed by the biological sciences [6]. The
most commonly practiced are correlation techniques, fea-
ture tracking, and fiducial marker tracking. Correlation
techniques are performed by selecting one of the projec-
tions as a reference image and aligning each pair neigh-
boring images by selecting the cross-correlation peak
between the images for the shift [7]. This method has been
proven useful but can yield poor results, as small cumu-
lative errors may result in a serious drift of the sample
[8]. As we will show, cross-correlation will not recover the
correct alignment even for noise-free data subjected to
random shifts. The current work finds a solution without
this deficiency.
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Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
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Figure 1 1-D projections are taken of a 2-D object. The small ball
along the edge is not projected in the 0° projection straight down
due to the limited projection range. However, at the higher angles,
this mass is now projected, which will affect an alignment based on
the center of mass of these projections.

Fiducial marker tracking is done by decorating the sam-
ple with small high-density particles that create high con-
trast in the projection images [9-12]. Individual markers
are then identified in all projections. The alignment is
determined based on tracking of the path of each marker
through the projections. This method can be very accu-
rate but requires a lot of manual interaction to properly
locate and center the markers. The main drawback of
marker tracking is that the markers will be present in
the reconstruction and must be removed for accurate
characterization of the sample. Since the markers are of
such high density, the reconstruction of the markers will
inevitably mix with the reconstruction, making the task of
removal nontrivial and possibly inaccurate.

Feature tracking uses regions of high contrast or inten-
sity as fiducial markers [13,14]. It requires the identifica-
tion of suitable regions of high contrast that remain visible
throughout the tilt series.

Others have begun to perform alignment techniques
based on a refinement approach [6]. After a coarse align-
ment from cross-correlation, one proceeds in computing
an initial 3-D reconstruction. This 3-D reconstruction is
then reprojected and compared with the original projec-
tions. A new alignment arises from aligning the repro-
jected reconstruction with the original projections, and
this process is iterated until convergence is met. In our
experience with this method, the reconstruction always
satisfies the projections, even if they’re misaligned, so that
insignificant refinement occurs from updating.

Most recently, Scott et al. [15] introduced a technique
based on the observation that as the sample is tilted about
a fixed axis, the center of mass of the sample will spin in
a circle, and if the center of mass is on the tilt axis, then
it remains fixed. In this way, it was suggested to shift each
projection so that the center of mass in each projection is
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fixed on a point and taking the line through this point par-
allel to the axis of rotation as the tilt axis. We believe this
is not always applicable and can yield poor results in many
settings. First, it requires a tilt series in which the total
projected volume is fixed for each projection. However,
in most practical settings, some mass will move in and
out of the projection range as the sample is tilted, which
will then significantly affect the location of the center of
mass within the projection along both axes of the projec-
tion images. This transition of mass must be accounted
for, as this transition will be along the edges of the projec-
tions, far from the center, and will thus weigh heavily on
the calculated center of mass. Figure 1 demonstrates this
transition of mass, with the small ball located on the left
edge of the object that has only been projected at certain
angles. An additional drawback is that using only the sin-
gle center of mass point in each projection removes the
use of any local structure of the projections as criteria for
alignment.

In this paper, we give an alignment method that makes
more detailed use of the path of the projected center of
mass along many cross-sections of the object, perpendic-
ular to the axis of rotation. In an ideal experiment, points
on the sample move in circular trajectories. We define a
viable path as the projection of such a circular orbit. By
simple calculation, we derive an equation which describes
all such viable paths of the projected centers of mass, as
opposed to the one trivial path of a single point. From
here, we show how one can determine a shift for each
projection so that the center of mass of all cross-sections
perpendicular to the axis of rotation nearly follows a viable
path. In this way, since all cross-sections are considered in
our alignment method, we will be able to avoid problems
involved with error in the calculated centers of mass due
to transition of volume in and out of the projections, and
we maintain local analysis of the projections as means for
the alignment. Additionally, our model aligns the projec-
tions based on the rotation about a chosen axis, so that
manual interaction for determining the positioning of the
tilt axis is avoided. In general, our method can be con-
sidered more statistically accurate, and we will show that
it provides very dependable alignment and definitively
improves the resolution of the reconstruction.

Methods
Notation
The 3-D density function for reconstruction will be
denoted f (x,y,z) = f(x, (¥ 2)), with (y z) a 2-D row vector.
The data generated are the projections of f in the z-axis,
about rotations around the x-axis. A rotation of f through
0 about the x-axis can be written as:
cosf —sinf
f(&(2)Qp), where Q= ( e )



Sanders et al. Advanced Structural and Chemical Imaging (2015) 1:4

A projection about the rotation 6 is then defined as:

Po(f)(xy) = fR £ (y2)Q0) dz.

We note that for each fixed x = xo, Py (f)(xo,y) only
contains information from f'(xo, y, z), and therefore, many
of the alignment and reconstruction processes can be
considered as 2-D rather than 3-D. Therefore, for conve-
nience, we will sometimes denote:

f02) =f(x,9,2) and Po(fy)(y) = Po(f)(x, ).

In practice, we are given the unaligned data; there-
fore, we will regularly refer to the misaligned projections,
denoted by Py (f). We define these projections as:

Bo(f)(x,9) = Po(f)(x — %0,y — ¥o),

where the coordinates (xy,yy) are the shifts to be deter-
mined for the alignment. Similarly, we will denote:

Po(f) () = Py (f) (¥ — ),

where in this instance the shift xy is not included. We
do not include it, for determining the shifts xy is a much
more trivial task, so that most of our work here focuses on
determining yy after the x-axis alignment is completed.

We will denote the total mass about a cross-section x
by My = [z fx(3,2) dy dz. Then, the coordinates for the
center of mass of a cross-section are denoted as:

1 1
cy——f/ ,2)y dy dz, Z——f/ ,2)zdy d
=L szx(y Z2)ydydz, c, L szx(y z)z dy dz

We will denote the center of mass of a projected cross-
section of f by:

1 - 1 ~
d=a [ Poowa and E= [ Bugoway
Mx R Mx R

We take the conventional L, norm (denoted by || - ||,) of
a function, say g, defined over R” to be:

lety = [ e dx

Similarly, for a vector x € R”", we take the ¢, norm
(denoted || - [|») to be:

n
p
lxlp = Il
i=1

Theoretical model
In practice, we are given the set of misaligned angular
projections:

Py, (N (x,y), for i=1,2,...,k
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Typically, the number of projections, k, can be from
50 to 200, with maximum tilts of & 70°. The domain is
of course limited, but for theoretical purposes, we will
assume that the domain for y is all of R. The prob-
lem is then to approximate the set of shifts (xg;,ys,)

for alignment, so that {ﬁgi ), y)}f;l correspond to
the aligned projections {P@i Hx, y)}k 1- Determining the

i=
shifts for the x-axis is much simpler, since the x-axis
is the axis of rotation. We simply observe that the
total mass in each cross-section should remain fixed, so

that:
M= [ foodd= [ mgpord

Based on this simple observation, one should be able
to approximate all shifts x5, based on a ‘conservation of
mass’ approach. We design a ‘global’ alignment method for
determining these shifts, by taking xy, to be the shift which
minimizes the difference between the observed mass in
each cross-section of IN)Q, (f) (x—xg;, ) and the average mass
of all projections in each cross-section. More precisely, we
let:

Xg, = arg min

k
~ 1 ~
/Pei(f)(x—x*,y) dy—% E (/ Paz(f)(x,y)dy)
R =1 R )

(2)

Of course, the averaged term, %Zle ( Iz ﬁgl
) dy), is subject to error since the projections
are not yet aligned, so the determination of each xg,
is iterated a few times until there is no change. The
number of iterations will depend on just how large
the offset of the projections are, but we have typically
observed no change in each xy, after just two iterations.
A demonstration of this x-axis alignment is given in
Figure 2.

One could also perform a similar ‘local’ method, by
comparing the consecutive projections to each other
instead of the average. This approach is subject to cumu-
lative error in the alignment similar to cross-correlation;
therefore, we avoid this approach.

From here forth, we will now assume that the x4, have
been accurately determined, and consider each cross-
section. For alignment along the y-axis, we again want
to make use of physical properties. It has been noted,
as fx(y,z) is rotated about the origin, the center of mass
(cx,c2) will spin in a circle around the origin. It is not
immediately clear, however, how this property can be
observed within the projections and used for alignment.
Computing the center of mass of a projected slice, we
obtain:
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Figure 2 Images demonstrating the alignment along the x-axis. (a) 2-D projection image taken at a 30°tilt about the x-axis. (b) 1-D projection of
(a) onto the x-axis. (c) 1-D projections onto the x-axis of all 2-D projections taken at different tilts about the x-axis. The misalignment is clearly shown
in (c), as the 1-D projections should all be nearly the same. (d) Same 1-D projections in (c), shown after alignment is performed along the x-axis.

cl
dl

) 1
&= [ Poor ay

=A%A(/Rﬁc<(yz)emydz) dy

= i/ /fx(a,ﬂ)(acosei—ﬂsin@) da dp
My Jr Jr

cos 0; sin 6;
=~ [ [ peopradadp-"32 [ [ fiwppdeds
=) cos; — cZsin6;,

where we applied the substitution (« B) := (y 2)Qg,. This
tells us that the center of mass of each projected cross-
section should follow the path given by:

tz":c,yccos@—cfcsinei, for i=1,2,...,k (3)

This equation gives us a local relationship between the
relative positioning of all of the projections to use for
the alignment. As discussed earlier, in [15], it was simply
noted that if the center of mass is located at the origin on
the tilt axis, then it does not move under rotations about
that axis. This observation can be made through similar
computations where the integrand is first taken over x,
and then, the center of mass is computed for the total sum
of the cross-sections, that is:

1
== / Py, (f)(x,y) dxydy = ¢ cos0; — ¢ sin6;,
M Jr2
(4)

where ¢ and ¢ here denote the center-of-mass coordi-
nates along the y- and z-axes, respectively, independent
of x, and M denotes the total mass of f. Therefore, it is

suggested to shift each projection so that t% = 0 for all ,
so that ¢ = ¢ = 0. While this approach is theoretically
sound in an ideal setting, summing over x immediately
removes any consideration of local behavior of the pro-
jections of f. As we will show, in many settings, this
simplification can be a major drawback.

Therefore, our approach is to determine a sequence of
shifts so that for each cross-section there exists some
deterministic center of mass (c},cZ) so that Equation 3 is
nearly satisfied. With this in mind, let us denote:

. 9
cosf; —sinf; e
cos 6y —sinby J i
0= , o= 2], and t=
C; .
cos 6 — sin Oy 7k

We note that from the acquired projection data we can
compute both ® and ¢,. Now from Equation 3, if our align-
ment is good, then for each cross-section «, there should
exist some ¢, so that ©c, = t,. Therefore, in order to yield
a good alignment, we would like to determine:

Y61

Y6,
y@ . ’

Y6y

so that there exist some c, satisfying:
Ocx X ty +ye, forallx,

or equivalently:
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min [|Oc, — (& +y0)l5 ~ 0  for all x.
Cx

In practice, we will have some finite number of cross-
sections, say «j, for j = 1,2,...n. Then, we would like
solve the minimization problem:

min

n
> min |Ocy, — (& +ye)ll3 (5)
Yo =1 Cxj

Now we can compute the minimization over c, directly.
Given © and ¢y, the least square solution ¢, to || ©c,— (tx+

yo)lls :

¢; = argmin [|0¢; — (& + yo) 3,
X

can simply be found by differentiation so that:

cx=ck = 0

<3||® — (te + )||2)
Bcglc Cx x T YO)Ily

3 2
@”G‘)Cx — (& +y0)l3

Cx=C}
Solving these equations, the solution can be found to be:
®+ (tx + y@)y

where @1 denotes the pseudo-inverse of ®, given by
ot = (070)710. It should be noted that ®T @ isa 2 x 2
matrix with entries:

k
©70)1 =) cos’l;, (O7O)y = (©"O),
i=1

k
=— Z cos 0; sin 6;, (®T®)22 = Z sin® 0;,
i=1
which is clearly invertible and without any notable com-
putational cost.
Then, our minimization in Equation 5 becomes:

n
min D 106% (8 + yo) — (b + 013

j=1
n
=min [ 31O ~ Dty +y0)3 | 6
j=1
If we let:
Ot -1 (OO — Dy,
T -1 (OO — Dy,
A= . , and b= . )

Ot -] (OOT — Dy,

then the minimization problem in Equation 6 is equivalent
to solving a standard least squares problem:

min [|Aye — bll3. 7)
Yo
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Practical implementation

The major consideration that we have ignored so far in
the theoretical development but will handle in this section
is that certainly the domain for y for ﬁgi(ﬂc)(y) is finite,
say [ —m, m]. As before with x, for all practical purposes,
we will now additionally consider the y-axis to be dis-
crete, and for each projection Py, (f)(x,y), the domain is
given as:

D={xy):x=12,...,n,y=—m,—m+1,...,m}.

We chose the indexing for y symmetrically for conve-
nience in the center-of-mass computations so that the
center of the projections is along the modeled axis of
rotation at y = 0. Computing tgi now becomes:

m
tﬁi = ]\% Z Py, (x,9)y.
Ep—

The first issue is that M, may vary through the tilt series
for each cross-section; in particular, since the domain for
y is limited, there may be some observable mass moving
in and out of the field of view after rotation and projec-
tion, as we demonstrated in Figure 1. This is again why it’s
important that we choose the alignment to be considered
over many projected cross-sections.

To handle this issue, we multiply T)gi (f)(x,y) by a win-
dow function, wg, (x,y), in the computation of tﬁ" in order
to alleviate some of this transition of mass in and out of the
frame. The window function allows for the balance of the
total mass within each projection. We choose our window
functions to satisfy the following properties:

(i 0< wei(x»y) <1
(i) M=Y"_, Z;,":_m Py, (f) (%, y)wg, (%, 3), for
i=12,...,k
(iii) wg(x,y) <wgx,y+1) if y<O,
wy, (%, y) = wg,(x,y+1) if y>0;
(ili) we, (x,y) = wg;(x+ 1,), forx =1,2,...,n — 1.

The first property simply emphasizes that multiplica-
tion of TDG,' (f) by wg, reweighs the projection values in order
to dampen the introduction of new mass in to the frames.
The second property then tells us that this dampening of
the values of Py, (f) by multiplication of wy, yields the same
total mass in each projection. Finally, properties (iii) and
(iili) describe how this dampening should be done. Prop-
erty (iii) says that the window function decreases as the
function moves away from the y-axis. This is because new
mass would be introduced along the edge of the plane
of view, so that we dampen these values more signifi-
better characterize wy, in a simple manner and simply
says that we place the same weight for each cross-section
x. One could remove property (iiii) and change prop-
erty (ii) so that instead the mass M, is fixed for each
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cross-section of each projection. This could potentially
cause bias in the alignment of the cross-sections, espe-
cially ones with considerable noise, and it would require
much greater computational time to determine a window
for each cross-section of each projection.

After the windowing function is determined, we then
compute the center of mass for each projected cross-

section ty, forj=1,2,...,nas:
o
i
20; _ B ;
bl W Z Po,(fy) M we,(»)y and &y = e
% y=—m ~é
te,

and solve a variant of Equation 6. The variation is that
we only choose to minimize only a subset of the cross-
sections, say T C {1,2,...,n}. This subset is chosen so
that the selected cross-sections have a significant quan-
tity of mass in each projection so that introduction of
new mass along the edges has considerably less effect on
the center of mass of this projected cross-section area. In
addition, we only choose those in which the observable
total mass within that cross-section varies little through-
out all projections, to again avoid the cross-sections with
large transition of mass.

More precisely, we pick the cross-sections in which the
ratio of the average observed mass through the projec-
tions to the variance of the mass in the projections is above
some specified tolerance. This tolerance can be chosen
based upon quality of the data. Finally, the minimization
for determining the shifts becomes:

min D l©re —Dye + )3 | » ®)
jeT
which can again be converted into a standard least squares
minimization problem as done in Equation 7. We sum-
marize the method with the simple schematic shown in
Figure 3.

Reconstruction method

After the alignment, for the reconstruction, we use a
compressed sensing approach by total variation (TV) min-
imization [16]. These methods have recently been gain-
ing popularity for electron tomographic reconstructions
[17-19]. In order to briefly describe the method, let us
denote the 3-D reconstructed approximation of f by g =
{gx’y’z}xN,y,z:I’ where for simplicity we now let our discrete
3-D domain be:

D={xy2 :%yzc{l,2,...,N}}.

Most reconstruction methods are then designed so that
numerical reprojection of g agrees with the experimen-
tal projections Py,(f), for i = 1,2,...,k. In particular,
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Input the unaligned
electron tomography
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Output the aligned
data, ready for
reconstruction
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function for each
projection to
accommodate for
transition of mass in
and out of the frames

|

Solve the center of
mass minimization
problem to determine
the shifts for the y-axis.

!

I

Solve the minimization
problem based on
conservation of mass,
to determine the shifts

for the x-axis alignment.

Select a good subset of
cross-sections along
the x-axis for y-axis
alignment, based on
total mass and variation
of observable mass

l from frame to frame
No I

Convergence /

Figure 3 The general workflow of our alignment approach.

reconstruction techniques typically minimize the distance
between the projections of g and the experimental projec-
tions, sometimes called the projection error. This projec-
tion error can be expressed as:

k k N
3 dist(Py, (), P, @)= Y (PN @)~ Py, @ x )"
i=1 i=1 x,y=1

)

However, simple minimization of the projection error
does not necessarily produce optimal results in the pres-
ence of noise. Therefore, methods, such as TV minimiza-
tion, additionally apply regularization conditions on the
reconstruction. In the case that our sample consists of
homogeneous materials and relatively smooth surfaces,
compressive-sensing theory allows us to assume that the
reconstruction should have a small total variation norm,
given by:

N N-1 N N-1
gl v = Z Z|gx,y,z+1 gx,y,zH'Z Z |Gy+1,2—Guy,zl
xy=1 z=1 x,z=1 y=1
N N-1
+ Z Z |gx+1,9,2 — Guypzl-
yz=1 x=1

With this in mind, we would like for Equation 9 to be
relatively small, while also applying a penalty on ||g| 7y for
noise reduction, so that our method solves:

min {Iglrv + 5" disBy ), @) 2}, (10)

i=1
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Results and discussion

We will give the results for experimental and simulation
data. We compare the reconstructions from alignment
using cross-correlation and our center-of-mass technique,
while also demonstrating the advantage of using many
slices for the center-of-mass alignment, as opposed to just
one center-of-mass calculation.

Experimental results

For the experimental data, we have an alumina particle
sitting on a holey carbon grid. The sample was prepared
by grinding the alumina spheres into powder. A suspen-
sion of the powder is prepared in ethanol and sonicated
for 5 min. The suspension was then added drop-wise over
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the lacey carbon film supported on 200 mesh Cu TEM
grids (Structure Probe, Inc., West Chester, PA, USA) and
dried at room temperature. The sample is analyzed using
the FEI Titan 80-300 Scanning Transmission Electron
Microscope equipped with a spherical-aberration probe-
corrector (CEOS GmbH, Heidelberg, Germany) operating
at 200 kV. The images were collected using the high-angle
annular detector with the camera length of 195 mm and
at 80,000 X magnification. The acquisition time was set to
15 s over an image area of 1024 X 1024 pixels resulting in
a pixel size of 0.2411 nm. The tilt series is collected using
linear tilt scheme continuously from -70° to +70°with
tilt increments of 2°. Dynamic STEM focus function is
used to compensate for change in focus across the image.

misalignment.

Figure 4 Reconstructions from cross-correlation and our alignment approach. (a-c) Cross-section images of the 3-D volume from
cross-correlation alignment. (d-f) Same cross-sections shown as (a-c) resulting from implementing our alignment method. (g, h) 3-D volume
renders of the two reconstructions from cross-correlation alignment (g) and our alignment method (h). The scale bar in (a) is valid for (a-f), and
the scale bar in (g) is valid for (g) and (h). It is apparent from these images that more blurring is present from the cross-correlation as a result of
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The projection of the sample at 30°degrees is shown in
Figure 2, and the aligned projections are shown in a video
in Additional file 1.

Total variation minimization is valid for this data set,
as the alumina particle and the carbon grid are known
to be uniform in density. In addition, regularization of
the reconstruction with TV minimization is critical to the
quality of the results due to the low-dose sampling con-
ditions necessary for acquisition of the projections due
to beam sensitivity of the material. The reconstructed
images from cross-correlation and our alignment meth-
ods are shown in Figure 4. While the overall particle
morphologies are similar, the reconstruction resulting
from our alignment displays much more uniform den-
sities and clearer particle structures. This will result in
more confident segmentation and characterization of the
reconstructed particle, which is crucial to the interpre-
tations of the experiment. In the 3-D images (visualized
using tomviz software [20]), the overall structures appear
similar. However, less rigid particle structure is recov-
ered with the cross-correlation alignment, as the red glow
around the particle demonstrates blurring from the main
particle structure to a lower gray level represented by
red in the colormap. In Figure 5, we plotted the cen-
ters of mass, t, for two cross-sections. Plotted together
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with £, are least squares solutions of the center of mass,
(ch c%), based Equation 3 given the computed f. It is
evident that our method finds a nearly viable path for
the motion of the center of mass, as we set out to do.
On the other hand, the alignment from cross-correlation
clearly fails to do so, resulting in low-resolution
reconstructions.

In Figure 6, additional results are given using the align-
ment method described in [15]. Again the 3-D visual
comparison of the reconstructions show that our align-
ment has produced a more rigid structure, as there is less
red glow from the main particle but less significant than
the results from cross-correlation. Similarly, the images
in Figure 6¢,d,e,f of the 2-D cross-sections show a more
rigid structure and less noisy artifacts due to misalign-
ment. The plots in Figure 6 give a quantitative comparison
of the alignment approaches. In Figure 6g,h, the location
of the global projected center of mass along the y-axis is
shown for the two methods. The plot in Figure 6g shows
the only consideration for the originally proposed center-
of-mass alignment, as the center of mass in the projections
along the y-axis is shifted to the tilt axis. With pixela-
tion of the images, there is still a small negligible distance
(less than half a pixel) between the center of mass in each
projection and the tilt axis. The location of this center of
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alignment method for the same cross-sections are shown in (b, d).

Figure 5 Location of the centers of mass of single cross-sections for each projection angle (blue) and the least squares solutions to fit the
viable paths (red) given by Equation 3. The results from cross-correlation for two cross-sections are given in (a, €), and the results from our
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Single COM alignment
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Figure 6 Results from alignment in [15] and our approach. (a, b) Images of 3-D volume rendering of the reconstructions from the [15] (a) and
our method (b). (¢, ) 2-D cross-sections images of the 3-D reconstruction shown in (a). (d, f) Images of corresponding 2-D cross-sections of the
3-D reconstruction shown in (b). (g, h) Plots of the path of the projected global center of mass along the y-axis for the two alignment methods. (i, j)

Plots of the path of a center of mass along a single cross-section of the projections for the two alignment methods.

mass resulting from our approach is shown in Figure 6h
and does not necessarily follow a viable path, because we
choose a different minimization and allow our approach
to avoid problematic cross-sections. In Figure 6i,j, the
path of the projected center of mass is shown for a sin-
gle cross-section for the two alignment methods, where,
for this cross-section, our methods demonstrate a viable
path and the approach based on the single global cen-
ter of mass does not. Inevitably, our method produces
better reconstruction results, demonstrating that a more
sophisticated alignment approach should be taken for
dependable results as we have done, taking into account
not one single data point but rather all cross-sections as
unique data points. The resulting segmentation of the alu-
mina particle is shown in 3-D in a video in the Additional
file 2.

Simulation results

As a numerical test, we reconstructed simulated data by
projecting a discrete 3-D volume with binary intensities
at the same tilt angles as the experimental data: a maxi-
mum tilt range of £ 70 °in 2°-angle increments. We align
the projection images according to the various alignment
methods, and each realigned set of projections is recon-
structed again using TV minimization. The results from
the simulations are shown in Figure 7. The total pro-
jected volume shows little variation depending on the tilt
angle, with the exception of a small mass appearing in
the projection range at high-tilt angles. This is indicated
in the projection images shown in Figure 7a,b, where, in
Figure 7a, the bundle of mass is located towards the upper
right of the projection image, and in Figure 7b, this bundle
of mass has nearly moved completely out of the projecting
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Figure 7 Tomographic simulations with a binary 3-D phantom. (a, b) Projection images of the phantom tilted about the axis at -50° and -32°,
respectively. (c-e) 2-D cross-section of the reconstructed phantom from registering the data with different alignment techniques. (c) Result from
our center of alignment method. (d) Result from cross-correlation. (e) Result from originally proposed center-of-mass technique.

range. With the special example we have here, this small
transition of mass will significantly affect the results of an
alignment approach such as in [15]. This is very clear from
the resulting blurry reconstruction in Figure 7e that does
not resemble a binary reconstruction. In addition, it can
be seen in Figure 7d that even in this noise-free simulation
cross-correlation also produces very poor results simply
because the model is not appropriate. In Figure 7c, it is
seen that our center-of-mass approach still yields optimal
results displaying a near binary reconstruction image that
almost completely resembles the original phantom not
presented in the figure. The adaptability of our method to
choose only the appropriate cross-sections with little vari-
ability of mass is clearly advantageous as demonstrated in
these simulations.

Conclusions

Our method has a sound physical basis: the movement
of the center of mass in each cross-section. By select-
ing shifts for individual tilt-series images that globally
lead to physically plausible motions for the centers of
mass of many cross-sections, our method effectively uti-
lizes the assumption that the sample object is rigid to
improve the alignment and the resolution of the final
reconstruction. We have shown that conventional align-
ment procedures, which shift the global center of mass to
the origin, may not produce physically plausible motions
in other cross-sections. We have generalized these meth-
ods in a computationally feasible manner that can be
easily be incorporated into electron tomography work-
flows. We have demonstrated the significance of such

consistency between cross-sections and the effective-
ness of the presented method by improving the reso-
lution of 3-D reconstructions of simulated and actual
data.

Additional files

Additional file 1: Video that shows the sequence of aligned
projection images of the alumina particle using the method
proposed in this paper.

Additional file 2: Video that shows the reconstructed alumina
particle in 3-D.
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