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Abstract 

The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural 
states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and 
symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data 
with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to 
advances in structural and chemical investigations of materials. Here, we present an approach to identify and clas-
sify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state 
that is composed of both local and nonlocal information extracted from atomically resolved images, and is wholly 
untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision 
techniques such as feature detection, and concepts such as scale invariance. We present the fundamental aspects of 
local structural state extraction and classification by application to simulated scanning transmission electron micros-
copy images, and analyze the robustness of this approach in the presence of common instrumental factors such as 
noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the 
unsupervised detection and classification of local structural states in an experimental electron micrograph of a com-
plex oxides interface, and a scanning tunneling micrograph of a defect-engineered multilayer graphene surface.
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Background
A multitude of imaging probes such as scanning trans-
mission electron microscopy (STEM) have reached the 
requisite spatial resolution, at least in two dimensions, to 
directly distinguish the individual structural microstate 
of a material, namely an atom and its local neighbors 
[1]. In addition, the prevalence of auxiliary information 
channels such as electron energy-loss spectra acquired at 
similar spatial resolutions allows one to append to these 
structural microstates additional chemical/electronic 
state information [2–4]. The data that emanate from such 
modalities reveal a wealth of information regarding the 
static modulation of material properties by local struc-
tural deviations [5], competing structural ground states 
[6], and even dynamic phase transformations or ensuing 

structural reordering during in  situ atomic resolution 
imaging of materials growth [7]. These imaging modali-
ties are crucial to fundamental investigations of modern 
materials, which often display a range of structural con-
figurations and order parameter phases. In many cases, 
some structural phases are not directly discernible by the 
diffraction-based methods of X-rays and neutron scatter-
ing [8, 9] due to either their small volume fraction and/or 
their lack of long-range periodicity, and therefore require 
an imaging approach [10, 11] for identification.

To identify and classify local structural states and 
their correlations as resolved by atomic resolution imag-
ing, the traditional language of crystallography with its 
restrictive assumptions of symmetry and periodicity 
leaves much to be desired [12]. Nevertheless, many suc-
cessful approaches that extract structural information 
from atomically resolved data [13, 14] still adopt many 
of the underlying assumptions of traditional crystal-
lography, through the use of integral transforms such as 
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Fourier transforms (e.g., in geometric phase analysis [15]) 
and other techniques from harmonic analysis. Such tech-
niques explicitly transform the local spatial information 
into a space that presupposes the presence of a coher-
ent superposition of components to classify the struc-
tural states present in an image. Recent work has taken 
a different route to identify local structural states by 
analyzing the intrinsic intensity signatures in atomically 
resolved images through multivariate statistics [16]. The 
feature identification method used is strictly local, how-
ever, and does not incorporate the information present 
in neighboring intensity distributions around an atom 
or defect site. Here, we explore an alternative method to 
identify and classify local structural states in atomically 
resolved images that is rooted in a multi-scale extraction 
and classification of structural states present in an image. 
The presented approach, in essence, provides a middle 
ground between structure identification that relies on 
“single-point” intensities and those that analyze informa-
tion obtained from an extended region through integral 
transforms.

The underlying assumptions of the presented approach 
are contextual information and scale invariance. The for-
mer implies that the local intensity distribution in the 
neighborhood of a particular structural state, e.g., atomic 
coordination surrounding a defect site, is the key measure 
by which we perform detection of local structural states. 
Furthermore, to not assume a priori, the spatial extent of 
these local states our approach should be scale invariant, 
whereby we would like to detect not only atoms but also 
clusters of atoms whose intensity distribution becomes 
more localized at larger length scales in the image (i.e., 
obtained through progressive down-sampling).

Our methodology borrows heavily from techniques 
developed in the field of computer vision to perform 
tasks such as pattern recognition, through the use of a 
scale-invariant feature detectors and descriptors [17]. 
Following detection, we classify the structural states 
by a hierarchical clustering strategy [18, 19] using the 
scale-invariant descriptor associated with each state. We 
tested the fundamental assumptions of our approach, 
namely scale invariance and contextual information, by 
applying it to simulated scanning transmission electron 
microscopy images of ideal crystals and atomically sharp 
interfaces between crystals. To explore the utility of this 
analysis in practice, we performed an extensive quantita-
tive study of the accuracy in detection of local structural 
states in the presence of instrumental factors such as 
noise- and material-dependent factors such as low con-
trast, finding that this approach is robust under common 
experimental conditions. Finally, we conclude by demon-
strating automated extraction and classification of local 

structural states in STEM images of strained interfaces 
of SrTiO3/LaCoO3 and local modulations in the electron 
density of states near defects on graphite surfaces imaged 
by scanning tunneling microscopy.

Methods
In what follows, we restrict our attention to 2-dimen-
sional atomically resolved images with gray scale value, 
where the image I is defined as a mapping from a 
2-dimensional spatial domain x (i.e., pixels) to a strictly 
positive real number (i.e., intensity): I : x → R

+. Fea-
ture detection proceeds by locating keypoint features, 
denoted by Kp(x), in an image I(x), that are extrema of a 
detector function F(ζ, x), where ζ is a parameter or set of 
parameters that specify the feature detector. The detector 
function is an operator that transforms the image locally, 
and often involves spatial derivatives of the image. A key-
point can be then generally expressed as

Numerous feature detection methods have been devel-
oped in the field of computer vision that achieve scale 
invariance [20, 21]. Here, we restricted our attention to 
the Laplacian of Gaussian operator (LoG). The latter is 
one of the most widely used feature detectors and defined 
as

where G(.) is a multivariate Gaussian distribution with 
variance σ and ∇2 is the Laplacian operator, evaluated in 
the spatial domain of the image.

The LoG operator is efficient in detecting local inten-
sity curvatures in images. Given that atomically resolved 
images show pronounced local intensity curvatures, we 
use the LoG throughout as a detector to extract features. 
As first pointed out by Lindeberg [22, 23], the Laplacian 
of Gaussian kernel provides a natural way to extract key-
point features that are stable in both the image spatial 
domain and the scale space of the image. The latter is 
constructed by consecutive blurring (convolution with a 
Gaussian filter) and down-sampling of the original image 
I(x) [23]. With additional approximations in regard to 
the detector function, the construction of a scale space, 
and search strategies for the extrema in the spatial and 
scale domains, Lowe constructed a feature extraction 
and description framework known as the scale-invariant 
feature transform (SIFT) [24]. SIFT is widely regarded as 
one of the most effective detector-based feature extrac-
tion techniques with wide-range applications from pat-
tern recognition [25] to image registration [20], and was 
used throughout this work as descriptor for a local struc-
tural state.

(1)Kp = argmaxζ ,x (F ◦ I)(x) or argminζ ,x (F ◦ I)(x) .

(2)F(σ , x) = ∇2
xG(x, σ) ,
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Results
Scale‑invariant detection and description of structural 
states
We used simulated electron microscopy images of bulk 
SrTiO3 and SrTiO3/BaTiO3 interface projected on the 
[100] direction. The images were generated using an 
implementation of the standard multislice code using 
standard imaging conditions for Nion UltraSTEM200 for 
200 kV operation and an aberration-free probe [26].

The raw simulated images were convoluted with a 
Gaussian probe size with a full-width-half-max of 0.7 Å 
to account for the finite source size of the electron beam. 
No other preprocessing of the images was performed. A 
global scaling of the intensity was applied. This intensity 
scaling has no effect on the Laplacian of Gaussian detec-
tor, since the detector is only sensitive to the local image 
contrast gradient (Fig. 1a).

The atoms detected in each image by the LoG are indi-
cated by circles. The size of each circle is proportional to 
the scale (i.e., σ) at which the feature was found to be an 
extrema of the LoG operator (Fig.  1b). Note that while 
the oxygen columns in the bulk SrTiO3 are not clearly 
evident in Fig.  1a due to their low intensity relative to 
Sr and Ti, they are readily detected by LoG albeit at a 
smaller scale than either Sr or Ti columns. The detected 
feature is commonly referred as a keypoint, Kp, in com-
puter vision. Associated with each keypoint are the coor-
dinates of the feature (x,y) and its scale (Fig. 1c), as well as 
other properties that we do not make use of in this work.

Given a particular Kp, we use the scale-invariant 
feature transform to compute a descriptor, Ds. The 
descriptor is centered around Kp(x,y) and encodes the 
intensity distributions around that feature (Fig. 1c). Both 
the spatial extent of Ds and the intensities it contains 
are sampled from the spatial domain of the image but 
at the appropriate scale. Consequently, the image patch 
from which Ds is extracted (16 × 16 pixels centered on 
Kp(x,y)) varies in size with respect to the spatial domain 
in the original image. The SIFT descriptor is composed 
of intensity gradient magnitudes and orientations that are 
appropriately weighted to decrease their contribution to 
the descriptor as a function of their distance from Kp(x,y) 
[24]. Furthermore, the intensity values in Ds are trans-
formed to a local frame of reference, i.e., with respect to 
Kp(x,y) The latter provides a description of the feature 
that is rotation invariant and reduced sensitivity to global 
changes in imaging conditions such as illumination [17, 
27]. The resultant SIFT descriptor is a 128-dimensional 
unit vector and is shown in Fig. 1c in a vector format for 
the different detected columns in Fig.  1b. In this work, 
we modified the SIFT descriptor, by intentionally break-
ing its rotational invariance through a choice of a pre-
ferred orientation angle of the Ds image patch (0° defined 

with respect to the x-axis of the image) (see Fig. 1c). This 
modification leads to a minimalistic descriptor that is 
only translation invariant and does not incorporate other 
symmetry assumptions. Consequently, Ds provides a dis-
tinct description of intensity gradients that are dissimi-
lar for atomic columns such as O1 and O2 despite them 
having identical local intensities, since their neighboring 
columns (Sr, Ti) are in a different orientation order. Given 
Kp and Ds, we then define a structural state,

as a pair composed of a keypoint, which gives a local 
description of the image intensity, and Ds which provides 
a nonlocal description of neighboring intensity gradients. 
This description of a structural state, such as an atomic 
column, is both scale invariant and context dependent.

Noise and contrast behavior of structural state detection
We assumed that the imaging is free from all geomet-
ric distortions due to scanning of the electron probe, 
and focused on testing the robustness of the above 
formulation at different noise levels and local con-
trast values. Each simulated STEM image (Fig.  1a) is 
altered with noise that is sampled from a Poisson dis-
tribution and added in a linear convex fashion to the 
ideal image, with the noise level given by λ. The accu-
racy of the atomic column detection as a function of 
λ is calculated by direct comparison to the ideal case 
(i.e., λ  =  0, accuracy  =  1). Furthermore, in the case 
of bulk SrTiO3, we split the accuracy into two classes 
depending on the local contrast of the detect atoms. 
We found that a detection accuracy of Sr and Ti atoms 
fluctuates about 0.85  (±0.06) for λ ≤  0.4, and falls off 
precipitously for λ  >  0.4. As expected, local intensity 
fluctuations affect the detection of Ti atoms first, as 
shown in Fig.  2a. The detection accuracy of O atoms, 
on the other hand, becomes unreliable for noise levels 
that even exceed 0.05 due to their low contrast values 
(<0.05). Such behavior is well known in experimental 
Z-contrast STEM images [28], where oxygen columns, 
while in principle resolvable, are often not detectable 
due their weak Rutherford cross-sections relative to 
heavier atoms and the finite dynamic range of the detec-
tor. The detection accuracy of Sr, Ti, and Ba columns in 
the simulated image of SrTiO3/BaTiO3 as a function of 
noise level behaves in an analogous manner to simu-
lated bulk SrTiO3. Robust image de-noising strategies 
can, of course, be employed in practice to increase the 
accuracy of atomic column detection by the LoG detec-
tor, but this was not performed here as the de-noising 
constitutes a separate problem from the focus of this 
paper, and is well covered in both electron microscopy 
and image recognition literature.

(3)S = (Kp,Ds),
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The primary reason for the reduced accuracy in 
detected atomic columns is the delocalization of their 
response to the LoG kernel in scale space [29]. Note, 

however, that the LoG detector has a strong response 
to features near edges (of an image), which, in practice, 
can lead to an overestimation of the detection accuracy. 

Fig. 1  Structural states as scale-invariant features. a Simulated STEM images of bulk SrTiO3 and SrTiO3/BaTiO3 interface with the electron beam 
propagating along the [100] crystallographic direction. Images are convoluted with a Gaussian function with FWHM of 0.7 Å to account for 
the finite source size of the electron beam. b Features extracted by the Laplacian of Gaussian detector are shown as an overlay of circles on the 
images in a. The intensity scale was inverted to improve the visibility. The size of the circle indicates the scale at which the feature was detected. 
For simplicity in the ensuing analyses, the contrast threshold of the LoG is tuned so that oxygen columns in the right image in b are not detected 
(see Additional file 1 for all atomic columns). c Close-up of the left image in b indicating both the keypoint, Kp, which describes the atom locally 
and the descriptor vectors, Ds, which encode the intensity distribution of neighboring columns to provide a nonlocal description of the column. 
Descriptors for the different atomic columns are shown as 1-dimensional vectors, indicating that columns with the same intensity can have differ-
ent descriptors due to the different angular configuration of their neighboring atoms. The structural state, in this case an atomic column, is then 
defined by the pair composed of (Kp, Ds). The implementations of the LoG detector in the Python scikit-image library [41] and SIFT in OpenCV [42] 
were used throughout



Page 5 of 11Laanait et al. Adv Struct Chem Imag  (2016) 2:14 

From the above analysis, we conclude that for noise 
levels � < 0.4Cmax, where Cmax is the maximum image 
contrast of the structural feature of interest, the pre-
sented approach can produce a meaningful and robust 
detection. An additional aspect of the LoG worth men-
tioning is that the presence of other instrumental fac-
tors, such as blurring, only affects the scale at which 
the feature is detected, but not the accuracy of the LoG 
detector. Finally, we emphasize that the LoG searches 
for both maxima and minima in the local imaging con-
trast as a function of scale and therefore can be used to 
detect missing atoms or used in imaging modes such as 

bright-field imaging where atomic columns can also be 
represented by the image minima. In such an instance, its 
detection robustness will be affected by the presence of 
noise in a manner similar to the above analysis.

Structural state classification
The definition of a structural state in Eq.  3 allows us to 
classify the different detected atomic columns to find 
the main structural classes present in a particular image. 
Numerous methods exist to perform these classification 
tasks. Here, we focus on unsupervised machine learning 
to explore the effectiveness of the presented approach 

Fig. 2  Atomic column detection in the presence of noise and low contrast. The accuracy of atom detection is analyzed as a function of noise level, 
λ. The noise, sampled from a Poisson distribution, is added to the STEM simulated images of bulk SrTiO3 a and SrTiO3/BaTiO3 (b). The accuracy is 
computed by comparison of detected features Kp(x,y) at some � �= 0 to the ideal images (λ = 0). To demonstrate the dependency of atom detec-
tion on the contrast of the atomic column, the accuracy of the detection of O columns and “Sr + Ti” is calculated and shown separately in (a). The 
images indicate the detected atomic columns at the corresponding noise levels. For ease of comparison with experimental images, the noise level 
shown here is defined as a fraction of the highest scattered intensity (from an atomic column) that is present in the simulated image. Due to the 
projective nature of STEM imaging, Ti columns are in fact not pure Ti columns but mixed Ti and O columns
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to “learn” the overall structural configuration in a mate-
rial. To that effect, we use hierarchical agglomerative 
clustering.

In agglomerative clustering, each structural state S is 
initially considered to belong to a distinct class Ci. Follow-
ing this initial assignment, different classes Ci and Cj are 
merged into a new class Ck if their respective members 
(i.e., structural states) are similar, given some notion of 
similarity, g. In our case, the similarity (or affinity) meas-
ure between two structural states, Si and Sj, is naturally 
defined by the (Euclidean) distance between their respec-
tive descriptors, Dsi and Dsj,

and is used to merge the different structural classes. 
Different methods, known as linkage, apply the similar-
ity measure to the classes in a specific way. We use the 
average linkage method which uses the average similarity 
between classes:

where NC (ND) are the number of structural states 
belonging to each class C(D). With ḡ as similarity meas-
ure, agglomerative clustering results in a classification 
that groups structural states into relatively compact 
classes that are well separated [30]. The only remaining 
parameter that must be specified to perform the hierar-
chical clustering of structural states is the level at which 
we must truncate the merging procedure. This was deter-
mined by a statistical measure that optimizes the similar-
ity between structural states that belong to the same class 
(see Additional file 1 for additional details and illustration 
of this analysis for the classification used here, Additional 
file 1: Fig. S2).

The results of the classification of atomic columns in 
the SrTiO3 and SrTiO3/BaTiO3 images (shown in Fig. 1b) 
using agglomerative clustering at various noise levels are 
shown in Fig. 3, where each structural class is represented 
by a different color coding. For bulk SrTiO3, we find that 
the classification clearly distinguishes between the differ-
ent atomic columns in the unit cell. Note that although 
O1 and O2 oxygen columns have identical imaging inten-
sities and are equivalent under the rotational symmetry 
of SrTiO3 (P2 mm), they are grouped into different clus-
ters, since their descriptors are not rotationally invariant 
as discussed above.

We found that even in the presence of large noise 
levels (λ =  0.75), columns of different types (Sr, Ti) are 
still classified separately, giving good evidence of the 
robustness of Eq. 3 in the presence of noise. In the case 
of SrTiO3/BaTiO3, a complete classification of the unit 

(4)g
(

Si, Sj
)

= Dsi −Ds
2
j ,

(5)ḡ(C,D) = 1
NCND

∑

i∈C

∑

j∈D

g
(

i, j
)

,

cell configurations is achieved, with Ti columns in bulk 
STO, at the interface, and in bulk BTO grouped as dis-
tinct states. Similar results are also obtained for Sr and Ba 
atomic columns. These observations are crucial evidence 
that the definition of an atomic column given in Eq.  3 
does encapsulate the local coordination environment 
necessary to discriminate between different structural 
states and further reinforce the utility of formulating a 
structural state as a combination of local and nonlocal 
image intensities.

Strained interfaces and defects
We illustrate the utility of the structural state extraction 
and classification in experimental images by two case 
studies from some of the most widely used atomic imag-
ing modalities, namely scanning transmission electron 
microscopy data of interfaces in heteroepitaxial systems 
and scanning tunneling microscopy (STM) data of defect 
states found on the surface of graphite.

In studies of solid/solid interfaces, in particular those 
interfaces that originate through epitaxial growth, char-
acterizing the structural nature of the interface is crucial 
to tailoring the materials properties. For instance, solid/
solid interfaces are often the starting point of extended 
defects such as misfit dislocations that arise to compen-
sate epitaxial strain, and lead to elastic fields propagating 
in both directions from the interface, substantially modi-
fying its crystal structure and potentially its properties. 
It has also been demonstrated that, even for a case of 
coherent epitaxy, the different symmetry of the film and 
substrate can result in a progression of distinct structural 
states localized in the vicinity of the interface [31]. In all 
these instances, it is crucial to precisely extract and iden-
tify the local structural states present at interfaces. We 
applied the presented approach to a Z-contrast STEM 
image of SrTiO3(STO)/LaCoO3 (LCO) interface. This 
image was acquired using Nion UltraSTEM 100 operated 
at 100 kV (Fig. 4a).

The classification of structural states leads to a succinct 
representation of the evolution of structural states at the 
interface, as represented by classes of LaCoO3 unit cells 
(region 1 in Fig.  4b) that are clearly distinct from their 
bulk phase (region 2). By capturing these structural devia-
tions in LCO that span multiple unit cells, our approach 
produces an automated and unsupervised technique to 
determine the extent of the interfacial structural states 
(compare Figs. 4b to 3c). Large structural distortions in a 
column of Co atoms (region 3) are also singled out by the 
classification as a distinct structural state and represent 
the elastic effects that originate at a defect at this incoher-
ent interface and propagate far into the bulk phase. For 
STO 2, atomic planes were identified as separate struc-
tural (region 4) classes than the bulk (region 5). Given this 
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Fig. 3  Classification of Local Structural States. Detected atomic columns at different noise levels in simulated STEM images are classified by hierar-
chical clustering, with different structural classes represented by circles with different colors. The different atomic columns in the [100] projection 
of the SrTiO3 unit cell are all classified as distinct structural states by the presented approach (a). In the presence of noise, the distinction between 
Sr and Ti atomic columns is still maintained (b). Note that Sr atoms at the edge of the image belong to separate classes since their coordination is 
different than that of Sr atoms in the “bulk”. c Classification of atoms in the image of a SrTiO3/BaTiO3 interface distinguishes the interfacial atoms (Sr, 
Ti, Ba) from those present in the bulk phases, and provides a complete description of the structural configurations present in the image
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classification of the atomic columns in this system, addi-
tional properties (e.g., displacements of Co with respect to 
the center of LCO unit cell) can be then readily computed 
for a structural class and compared to others to fully char-
acterize the nature of the interface in this system.

Next, we extract and classify structural states that arise 
due to point-like defects on a graphite surface. Point 
defects such as monovacancies, adsorbed atoms, intersti-
tials, and Stone–Wales defects are known to affect strongly 
the electronic and magnetic properties of graphene layers 
[32]. Recently, it was realized that the electronic structure 
of atomic vacancy is highly sensitive to the details of the 
passivation of its dangling σ bonds with foreign chemical 
species, such as hydrogen and oxygen [33]. Here, we focus 
on the so-called V111 type of the monovacancy–hydro-
gen complexes [33, 34]. The V111 complex, in which each 
σ dangling bond is passivated with one hydrogen atom, is 
characterized by the formation of a localized nonbonding 

π electronic state at the Fermi level [34] whose decay into 
the “clean” area of the lattice can be described by r−2 law 
[35]. To date, the studies of monovacancy–hydrogen com-
plexes (as well as other types of point defects) in graphene-
like materials have been limited to either the single-layer 
structure or AB (Bernal)-stacked structure. On the other 
hand, a rotation of graphene layers with respect to each 
other, particularly in the case of low twist angles (below 
10°), may result in an alternation of the system’s low-
energy electronic structure, such as a reduction of the 
Fermi velocity and associated localization of charge car-
riers [36, 37], which may in turn alter the electronic and 
magnetic properties of the vacancy. Below, we analyze the 
scanning tunneling microscopy (STM) data on hydrogen-
passivated single atomic vacancies of the V111 type in the 
topmost graphene layer of graphite that is rotated relative 
to the underlying layer(s).

Figure  5a shows the STM image of the topmost gra-
phene layer of graphite that features a well-defined Moiré 
pattern and is peppered with monovacancy–hydrogen 
complexes of the V111 type. The V111 complexes were 
prepared by sputtering the surface of a graphite sample 
with low-energy Ar+ ions and its subsequent exposure to 
atomic hydrogen environment and annealing. The choice 
of experimental parameters was the same as reported in 
the study of V111 complexes in Ref. [34]. The extracted 
and classified structural states by our methodology are 
shown in Fig. 5b. First, note that the “edge” atoms around 
the vacancy produce a strongly nonequivalent response 
in terms of the corresponding local intensity of the STM 
signal (see inset to Fig. 5a). Given that the STM signal is a 
convolution between topographic and electronic features, 
this in-equivalency may reflect the out-of-the-plane struc-
tural distortions at the vacancy site. Our analysis allows 
the extraction of detailed information on the distribution 
of the vacancy’s nonbonding state for each V111 complex 
(associated with magenta, green, and orange circles, e.g., 
region 1 in Fig.  5b). In particular, we found that the dis-
tribution of the STM signal associated with the vacancy’s 
nonbonding state (i) does not follow the threefold symme-
try of underlying atomic lattice, which can be related either 
to the aforementioned structural distortions or to the rota-
tional direction of the topmost graphene layer (nonzero 
twist angle), and (ii) the details of its propagation appear 
to be sensitive to the relative position of vacancy with 
respect to Moiré spots on the surface. To confirm the lat-
ter, our analysis must be carried out on a larger set of STM 
images and sample conditions, and is beyond the scope of 
this article. Nonetheless, the efficient extraction and clas-
sification of structural states associated with the monova-
cancy–hydrogen complexes represents a crucial first step 
in a more systematic study of modulating the electronic 
configurations of graphene through point defects.

Fig. 4  a HAADF-STEM images of LaCoO3/SrTiO3 interface. The color 
scale in normalized intensity. b Classified structural states clearly 
highlight the diffuse nature of the interface, with each boxed region 
outlining a particular structural configuration: 1 bulk LaCoO3, 2 Inter-
facial LaCoO3, 3 distorted column of Co atoms, 4 interfacial SrTiO3, 5 
bulk SrTiO3
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Discussion
A key ingredient to the success of the Computer Vision-
based analysis of local structural states resides in the defi-
nition of a structural state that combines both local and 
nonlocal image intensity distributions, in contrast with 
previous methods that rely on single-point intensities [14, 
16]. For instance, a single-point intensity method would 
not differentiate between the Ti columns present in bulk 

BaTiO3, Ti columns in bulk SrTiO3, and those at the 
interface of STO/BTO, since they all have indistinguish-
able intensity values, and spatial separations and angles 
with respect to their neighboring atoms, yet, differ only 
in the type of atoms that constitutes their coordination 
(Fig. 3c). The latter is a direct consequence of the defini-
tion of a structural state given in Eq. 3, whereby intensity 
gradients in a neighborhood around Kp are encoded in 
Ds, with the size of this neighborhood directly given by 
the appropriate scale at which the keypoint was found to 
be an extremum of the Laplacian of Gaussian detector. 
Another illustrative example of the advantages of the pre-
sent approach is in detecting a range of distinct classes in 
the local configuration of (La, Co) columns at the inter-
face of LCO/STO that clearly reflect the strained nature 
of the latter. Given the success of our approach in detect-
ing these subtle variations in the structure of materials, it 
would be interesting to explore in future work if one can 
reconstruct the fundamental ingredients of the lattice 
and unit cell directly from the more primitive definition 
of a structural state in Eq.  3, which relies solely on real 
space image information and the concept of scale invari-
ance, without relying on the priori knowledge of the aver-
age crystallographic symmetry.

The classification procedure used here, namely hier-
archical clustering, enabled a physically meaningful cat-
egorization of structural states in a number of cases, both 
for simulated and experimental data. This unsupervised 
learning approach, however, lacks a clear connection to 
the physics of the problem. In many contexts, one often 
seeks the identification/classification of local structural 
states subject to well-defined physical principles such as 
spatial connectivity, or localization due to the presence 
of interfaces, defects, etc. Under these conditions, one 
can supplement hierarchical clustering with connectivity 
constraints to generate structural classes that obey a set 
of physical assumptions. In essence, it allows one to test 
different physical hypotheses regarding the local struc-
ture present in the system at hand.

We have shown that representing a structural state 
with computer vision-based descriptors that are effi-
cient at encoding image information leads to an analysis 
approach that can discriminate between the myriad of 
local states in the presented data across vastly different 
imaging modalities. The preponderance of atomically 
resolved images both in the literature and open databases 
provides an opportunity to begin data exploration of local 
structural states that are shared by a variety of materials 
and their evolution during varying experimental condi-
tions. The SIFT descriptor with its scale invariance could 
provide one of the promising methods by which one 
can fingerprint local structural states of interest to per-
form structural recognition against the above databases. 

Fig. 5  Scanning tunneling microscopy of defects on graphite. The 
image was acquired with a sample bias voltage of 100 mV and 
tunneling current setpoint of 0.7 nA. a The defects (box outline) are 
monovacancy–hydrogen complexes generated through Ar+ ion 
bombardment, followed by annealing in a hydrogen environment. 
These defects modulate the local electronic density of states in their 
immediate vicinity as shown in the inset. The color bar is normalized 
intensity. b Extraction and classification of atoms, select edge atoms 
surrounding a monovacancy–hydrogen complex (e.g., outlined 
region 1) as being distinct from the rest of the atoms in the system, 
with different structural classes encoded by a unique color label
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Furthermore, the structural identification we presented 
could also be used to identify recurring artifacts in atom-
ically resolved imaging such as dynamic scattering and 
electron beam channeling [38], by comparing local state 
descriptors obtained from a library of simulated images, 
for instance, as a function of thickness, to those local 
descriptors extracted from experimental data.

Modern imaging modalities such as STEM are hyper-
spectral in nature, where in addition to atomic resolu-
tion images (by Z-contrast), a full electron energy-loss 
spectrum can be acquired. In the case of STM, tunneling 
spectroscopy can be performed to measure the full elec-
tronic density of states. As such, incorporating this addi-
tional information into the feature detection/description 
method is an important task that should be explored in 
future work [39], to construct descriptors that are more 
physics based, thereby taking full advantage of all the 
information present in modern imaging modalities. This 
would benefit, in particular, atomic imaging modalities, 
such as atom probe tomography, that provide a full three-
dimensional view of a material’s structure [40].

Conclusion
In summary, we have explored a novel approach by which 
one can detect, identify, and classify local structural 
states in spatially resolved atomic images. We showed 
that the principles of scale invariance and contextual 
structural state identification, defined based on neighbor-
ing intensity distributions, give an efficient and discrimi-
native approach by which one can extract and identify 
local states without the assumptions of symmetry, and 
illustrated the application of this method to simulated 
and experimental images from electron microscopy and 
scanning tunneling microscopy. Moreover, we showed 
that the more primitive concept of a structural state 
is sufficient to extract the salient structural configura-
tions present in atomic imaging of materials. We foresee 
that our approach may provide a natural and powerful 
method by which one can express more complex struc-
tural correlations such as those present in frustrated and 
disordered systems, correlations that may lie obscured by 
the rigid assumptions of classical crystallography in two 
dimensions.

Additional file

Additional file 1: Figure S1. Detected Keypoints from all atomic 
columns present in the simulated. STEM of a SrTiO3/BaTiO3. In the main 
text, only Sr, Ti, and Ba columns are included to simplify the analysis of 
noise dependency and classification. The addition of detected oxygen col-
umns shown above does not modify the results in the main text. Figure 
S2. Silhouette Coefficient Analysis of the Classification is shown here 
for the simulated STEM image of a bulk SrTiO3 lattice. Top is a plot of the 
silhouette coefficient with different number of clusters. Bottom are the 4 
structural classes (Sr, Ti, O1, O2).
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