
Gouillart et al. Adv Struct Chem Imag  (2016) 2:18 
DOI 10.1186/s40679-016-0031-0

RESEARCH

Analyzing microtomography data 
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Abstract 

The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modali‑
ties. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source 
image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 
2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions 
according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users 
benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or 
machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and 
the scalable performance required for the high-throughput analysis of X-ray imaging data.
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Background
The acquisition time of synchrotron tomography images 
has decreased dramatically over the last decade, from 
hours to seconds [29]. New modalities such as single-
bunch imaging provide a time resolution down to the 
nanosecond for radiography [41]. However, the time 
subsequently spent in processing the images has not 
decreased as much, so that the outcome of a success-
ful synchrotron imaging run often takes weeks or even 
months to be transformed into scientific results.

Transforming billions of pixels and voxels to a few 
meaningful figures represents a tremendous data reduc-
tion. Often, the sequence of operations needed to pro-
duce these data is not known beforehand, or might be 
altered due to artifacts [31], or to an unforeseen evolu-
tion of the sample. Image processing necessarily involves 
trial and error phases to choose the processing work-
flow. Therefore, image processing tools need to offer at 
the same time enough flexibility of use, a variety of algo-
rithms, and efficient implementations to allow for fast 
iterations while adjusting the workflow.

Several software applications and libraries are avail-
able to synchrotron users to process their images. 
ImageJ [1, 48] and its distribution Fiji [45] is a popu-
lar general-purpose tool for 2D and 3D images, thanks 
to its intuitive menus and graphical tools, and the 
wealth of plugins contributed by a vivid community 
[46]. Software specialized in analyzing synchrotron 
data is available as well, such as XRDUA  [17] for dif-
fraction images obtained in powder diffraction analysis, 
or for 3D images, commercial tools such as Avizo 3D 
software (TM), or ToolIP/MAVIkit  [19] are appreci-
ated for an intuitive graphical pipeline and advanced 
3D visualization. Some synchrotrons have even devel-
oped their own tools for volume processing, such as 
Pore3D [9] at the Elettra facility. Alternatively, the use 
of a programming language gives finer control, better 
reproducibility, and more complex analysis possibili-
ties, provided classical processing algorithms can be 
called from libraries—thereby limiting the complexity 
of the programming task and the risk of bugs. Matlab 
(TM) and its image processing toolbox are popular in 
the academic community of computer vision and image 
processing. The Python language is widely used in the 
scientific world and in synchrotron facilities. As a gen-
eral-purpose language, Python is used in synchrotrons 
to control device servers [8, 15, 51], to access raw data 
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of X-ray detectors [27], to reconstruct tomography vol-
umes from radiographs [23, 32], and in data process-
ing packages for macromolecular crystallography [3], 
azimuthal integration of diffraction data [4], or fluores-
cence analysis [50, 52].
scikit-image [54] is a general-purpose image 

processing library for the Python language, and a com-
ponent of the ecosystem of Python scientific modules 
commonly known as Scientific Python [34]. Like the rest 
of the ecosystem, scikit-image is released under 
a permissive open-source license and is available free 
of charge. Most of scikit-image is compatible with 
both 2D and 3D images, so that it can be used for a large 
number of imaging modalities, such as microscopy, 
radiography, or tomography. In this article, we explain 
how scikit-image can be used for processing data 
acquired in X-ray imaging experiments, with a focus 
on microtomography 3D images. This article does not 
intend to be a pedagogical tutorial on scikit-image 
for X-ray imaging, but rather to explain the rationale 
behind the package, and provide various examples of its 
capabilities.

Overview and first steps
In this section, we provide a short overview of the typi-
cal use patterns of scikit-image, illustrated by short 
snippets of code. Since Python is a programming lan-
guage, the user interacts with data objects and images 
through code, which is either entered and executed in an 
interactive interpreter, or written in text files (so-called 
scripts) that are executed.

Images are manipulated as numerical arrays, each with 
a single, uniform data type. This common format guaran-
tees interoperability with other libraries and straightfor-
ward access to and interpretation of computer memory. 
The N-dimensional (2D, 3D, ...) numerical array object is 
provided by the NumPy module [53].

In image processing in Python, one of the first tasks 
then is to generate NumPy arrays, which is often achieved 
by reading data from files. We read one 2-dimensional 
image from a file and display it as follows:

skimage is the name under which scikit-image 
is imported in Python code. Note that functions (such 
as imread that reads an image file, or imshow that 
displays an image) are found in thematic submodules of 
skimage, such as io for Input/Output.

A stack of 2D images, such as tomography slices gener-
ated by a reconstruction algorithm, can be opened as an 
image collection or a 3D array:

 Raw data formats can be opened using the NumPy 
functions fromfile (to load the array into memory) or 
memmap (to keep the array on disk). The following code 
creates an array from a raw image file of unsigned 16-bit 
integers with a header of 1024 bytes: 

 For every raw data specification, it is thus very easy 
to write a reader using np.memmap (see for example 
https://github.com/jni/python-redshirt). hdf5 files are 
accessed using modules such as h5py, pytables.
scikit-image has a simple Application Program-

ming Interface (API), based almost exclusively on 
functions. Most functions take an image (i.e., a multi-
dimensional array) as an input parameter: 

Optional parameters can be passed as Python keyword 
arguments, in addition to the image parameter. 

 A few functions require several arrays to be passed, 
such as the watershed segmentation algorithm that takes 
as parameters the image to be segmented, and an image 
of markers from which labels are propagated: 

 Therefore, the image processing workflow can be 
seen as a directed graph (a richer structure than a lin-
ear pipeline), where nodes are image-shaped arrays, and 
edges are functions of scikit-image transforming the 
arrays (see Fig. 1).

Most functions transparently handle 2D, 3D, or even 
higher-dimensional images as arguments, so the same 

https://github.com/jni/python-redshirt
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functions can be used to process tomography, micros-
copy, or natural images. The rest raise an error when 
passed a 3D argument: 

 However, the proportion of functions supporting 3D 
images is always increasing, thanks to the many contribu-
tors to the library.

While the majority of functions return processed 
images, returns can also be numerical value(s) such as 
pixel coordinates of objects of interest or statistical infor-
mation about the image: 

The Python ecosystem
The benefits of scikit-image for image processing 
come not only from the features of the package alone, but 
also from the rich environment surrounding scientific 

Python [34, 38]. Figure  1 illustrates how several com-
ponents of this ecosystem combine into a sophisticated 
image processing workflow.
NumPy arrays are the cornerstone of the Scientific 
Python ecosystem, and of scikit-image operations in 
particular. NumPy “one-liners” include cropping or down-
sampling an image, or retrieving pixels corresponding 
to a given label in a segmentation. To illustrate the com-
pactness of NumPy code, consider modifying pixel values 
below a threshold. This operation can be written as 

exploiting the ability to index arrays with boolean arrays, 
also called masking. NumPy uses memory sparingly and 
avoids making new copies of arrays whenever possible, an 
important requirement when dealing with the gigabyte-sized 
images of tomography. For example, cropping a subvolume 
as follows does not create a copy of the original array 

but instead refers to the correct memory offsets in the 
original.

Fig. 1  scikit-image and the Scientific Python ecosystem. Images are opened from files as NumPy arrays. Functions of scikit-image 
transform image arrays into other arrays with the same dimensions, or into arrays of numbers corresponding to features of the image. The output of 
scikit-image functions can be passed to other Python modules relying on NumPy arrays, such as SciPy or scikit-learn. Image-shaped arrays 
are transformed into visualizations with matplotlib (2D) or Mayavi (3D). A variety of environments is available for code development and 
execution, from classical IDEs to Jupyter notebooks
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Interpreter and development environment While several 
interpreters are available to execute Python instructions 
and scripts interactively, the most popular in the scien-
tific world is IPython [37, 44]. IPython is an advanced 
interpreter, which integrates syntax highlighting, text 
auto-completion, a debugger, introspection and profiling 
methods, and online help. Several integrated develop-
ment environments (IDEs) come bundled with IPython, 
together with other components such as a text editor. 
Notable examples include Spyder (Fig. 2), PyCharm, and 
Visual Studio Code.

The Jupyter notebook [26] is a web application that 
grew out of the IPython project. Jupyter notebooks pro-
vide an interactive development environment within a 
web browser, where live code can be enriched by explan-
atory text, equations, and visualizations (Fig. 3). Jupyter 
notebooks render directly as webpages on GitHub, mak-
ing them a straightforward tool to publish online a script 
and its output. As of July 2016, more than 500,000 Jupy-
ter notebooks were posted on GitHub, demonstrating 
their wide adoption by the community as workflow-shar-
ing tools (http://archive.ipython.org/media/SciPy2016Ju-
pyterLab.pdf).
Visualization libraries Visualizing images is an impor-
tant component of the image processing workflow, used 
to inspect the final result and to adjust the parameters of 
intermediate processing operations. matplotlib [24] 
is the most popular 2D plotting library of the Python eco-
system. It can be used to visualize 2D data such as color 
or grayscale images, and 1D data such as contour lines, 
outlines of segmented regions, histograms of gray levels. 
Although matplotlib has simple 3D plotting capabili-
ties, we recommend using the mayavi module [42] for 
applications requiring advanced 3D visualization, such 
as tomography. mayavi is based on the VTK toolkit. 
It exposes a simple API for visualizing data passed as 
numpy arrays. For example, visualizing the surface of 
binary data can be written as 

(see Fig. 4 for the resulting visualization).
For more advanced visualizations, a large majority of 

VTK capabilities can be accessed through mayavi’s pipe-
line API. mayavi offers a good trade-off between sim-
plicity of use for common operations, and accessibility 
to more sophisticated capabilities such as responsive 
visualizations.

Advanced toolkits for signal processing and data science 
scikit-image is only one Python module that can 
be used for data processing, among many others. A very 
popular module is scikit-learn [36], a Python mod-
ule for machine learning using NumPy arrays. Local fea-
tures of an image (such as local statistics of gray levels, 
or geometric points of interest) or features of segmented 
objects (e.g., geometrical and intensity characteristics 
of segmented particles) can be extracted with functions 
from skimage.feature (see Fig. 1). It is then possible 
to use a classification algorithm from scikit-learn 
to label pixels (a segmentation task) or to classify whole 
images or objects that have already been segmented. The 
near-universal use of NumPy arrays ensures the inter-
operability between these packages, so that just a few 
lines of code are sufficient to create these sophisticated 
workflows.

The modularity of the Scientific Python ecosystem may 
be confusing at first sight, but the core modules of this 
ecosystem are almost perfectly compatible, thanks to the 
shared use of NumPy arrays and common development 
practices (although they are developed in parallel by dif-
ferent teams). Several “distributions,” such as Anaconda 
or Canopy, bundle together the most popular libraries, 
including scikit-image.

Image processing capabilities
Capabilities scikit-image offers most classi-
cal image processing operations, such as exposure 
and color adjustment, filtering, segmentation, feature 
extraction, geometric transformations, and measure-
ments of region characteristics. In addition to com-
mon operations, some advanced algorithms are also 
implemented; a selection of which is illustrated in Fig. 5. 
In the following, we briefly illustrate how scikit-
image can be used for some typical image processing 
tasks encountered when analyzing tomographic images: 
denoising, mid-range feature detection, segmentation, 
and measurement of region properties. For the sake of 
brevity, other tasks such as contrast manipulation or 
geometric transformations are not described here; the 
interested reader is referred to the documentation of 
scikit-image.

Tomographic images often suffer from artifacts or poor 
signal-to-noise ratio. Therefore, denoising data is often 
the first step of an image processing workflow. Several 
denoising filters are available for restoring these images, 
ranging from general-purpose median and bilateral filters 
to those more suited to specific applications. For exam-
ple, total-variation denoising [12, 20] is ideal for restoring 
piecewise-constant images (see Fig.  5a), such as images 
with a small number of phases encountered in materials 

http://archive.ipython.org/media/SciPy2016JupyterLab.pdf
http://archive.ipython.org/media/SciPy2016JupyterLab.pdf
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science [7]. Conversely, images with a fine-grained tex-
ture are better preserved with non-local means denois-
ing, a patch-based algorithm [10] (see Fig. 5a).

Detecting the presence of objects or extracting pixels 
corresponding to objects (a task known as segmenta-
tion) is an important task of image analysis for medical 
or materials science applications. scikit-image offers 
a wide variety of functions for detecting geometrical 
features of interest in an image. In order to detect thin 
boundaries, the ridges of an image can be identified 
as regions for which the leading eigenvalue of the local 
Hessian matrix is high (see Fig. 5b). In the Fourier space, 
peaks in 2D Bragg diffraction patterns can be extracted 
using blob detection methods [4], such as the Laplacian 
of Gaussian method (see Fig. 5b).
Segmentation of regions of interest can be achieved using 
one of the various strategies, depending on the char-
acteristics of the image. Images with a clear contrast 
between regions can be segmented automatically, thanks 
to several thresholding algorithms, including an adaptive 
local thresholding algorithm aimed at images with con-
trast variations. Super-pixel algorithms [2, 18] create an 
over-segmentation of images in super-pixels, by grouping 
pixels that are close together both in color- and spatial 
distance (see Fig. 5c). Region-growing algorithms, such as 
the morphological watershed or the random walker [22], 

propagate the labels of user-defined markers through the 
image (see Fig. 5c). The active contour algorithm [25] fits 
snake contours to features of the image, such as edges or 
high-brightness regions.

Following segmentation, the characteristics of labeled 
regions (particles, porosities, organs, …) resulting from 
a segmentation can be measured using the measure 
submodule. The different connected components (e.g., 
bubbles or non-touching particles) of a binary image 
are labeled with the measure.label function. Prop-
erties of labeled regions such as size, extent, center of 
mass, or mean intensity value are accessed with meas-
ure.regionprops (see Fig.  5d). Local characteristics 
of a region can be retrieved as well: Fig.  5d shows how 
the local diameter of open porosity is measured by com-
bining a skeletonization of the porosity channels, and the 
distance transforms to the other phase measured on the 
skeleton.
Performance Given the large size of tomography datasets, 
the execution speed of image processing operations is of 
critical concern. scikit-image relies mostly on calls 
to NumPy operations, of which most are performed in 
optimized compiled code (C or Fortran). Performance-
critical parts of scikit-image that cannot call effi-
cient NumPy code are implemented in Cython. Cython 
[5] is an extension of the Python language that supports 

Fig. 2  The Spyder IDE integrates a text editor (with syntax highlighting), the IPython interpreter, as well as a panel for code introspection (online 
help, variable explorer, ...)
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explicit type declarations, and is compiled directly to C. 
Therefore, the performance of scikit-image can be 
close to the one of the libraries written in a compiled 
language such as C++ or Java. For example, comput-
ing the watershed segmentation of a 2000 × 2000 array 

of floats into 1000 regions took about 1 s using 1 CPU 
of an off-the-shelf laptop, and 10 s for a 256 × 256 × 256 
image segmented into 2000 regions. Similar timescales 
were obtained with mahotas, a Python package imple-
mented exclusively in C++ [14] (with a slight advantage 
for mahotas).

However, basic scikit-image code runs on a sin-
gle core. Computing workstations and servers used for 
X-ray imaging typically have several tens of cores. Par-
allelization of the computing workflow can be achieved 
in multiple ways. The most trivial parallelization scheme 
consists of applying the same workflow to different 
images, on different cores. However, finer-grained paral-
lelization is preferable when prototyping the processing 
workflow.

An easy solution consists in dividing an image into 
smaller images (with or without overlap, depending on 
the operation), and to apply the same operation on the 
different sub-images, on different cores. Creating over-
lapping chunks is easy with the dedicated function 
view_as_windows (or view_as_blocks for con-
tiguous non-overlapping chunks): 

Fig. 3  The Jupyter notebook allows mixing of computer code (top), plot and text output (middle), and free-form narrative text (bottom). This makes 
it ideal to record and report code-based analyses. Screenshot from [33]

Fig. 4  Simple 3D visualization realized with Mayavi
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 The joblib library enables easy parallel processing. 
Looping over the different blocks, and dispatching the 
computation over several cores, is realized with the fol-
lowing syntax: 

 scikit-image also offers experimental support for 
a more integrated parallel processing pipeline, thanks to 
the dask [43] module: 

 

The size of chunks is determined automatically from the 
number of available cpus, or can be specified by the user.

Caching provides another tool to speed up data analy-
sis. A situation that often arises is that, while prototyp-
ing a workflow, scripts (containing the image processing 
pipeline) are run several times to experiment with param-
eters. joblib provides a caching mechanism that avoids 
the repetition of function calls, if their arguments have 
not changed: 

Fig. 5  Typical image processing operations with scikit-image. Data are synthetic, unless stated otherwise. a Filtering−Top non-local means 
denoising of an image with a fine-grained texture, acquired by in situ synchrotron microtomography during glass melting [21]. Bottom total-
variation denoising of an image with two phases, corresponding to phase-separating silicate melts observed by in situ tomography [7]. b Feature 
extraction−Top Hubble deep field (NASA, public domain), blob detection using the Laplacian of Gaussian method. Bottom ridge detection using 
the leading eigenvalue of the Hessian matrix, neuron image from CREMI challenge (https://cremi.org/data/). c Segmentation—Top super-pixel 
segmentation of a CT slice of the human head [13], using Felzenszwalb’s algorithm [18]. Bottom random walker segmentation (right) of noisy image 
(top-left corner), using histogram-determined markers (bottom-left corner). d Measures—Top visualization of local diameter (color-coded on the 
skeleton curve) of an interconnected phase (represented in violet). Bottom particles color-coded according to their extent

https://cremi.org/data/
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Finally, we note that the biggest performance improve-
ments often come from the improvement of algorithms 
(as opposed to computing architectures only). For exam-
ple, non-local means denoising [10] is a costly operation, 
since it requires several nested loops, on all pixels and 
on neighboring patches to be compared with the pixel-
centered patch. Thanks to the implementation of a more 
recent algorithm [16] that modifies the internal organi-
zation of loops, it was possible to improve the execution 
time by a factor of roughly ten times. The large size of the 
scikit-image community makes it likely for algorith-
mic improvements to be discussed regularly. During the 
code review process, a close watch is also kept on mem-
ory consumption, since for large image sizes, transfers 
between computer memory (RAM) and CPU cache are 
often a serious performance bottleneck.

Documentation
The quality of software documentation is (perhaps 
especially) important in software aimed at scientists. 
scikit-image users have access to several kinds of 
documentation. All functions are documented using 
the NumPy documentation standard [35], which is uni-
versal across all major Scientific Python packages. The 
standard includes a description of all input and output 
variables and their data types, together with explanations 
of what each function does and how to use it. Function 
documentation is accessible online or within the devel-
opment environment itself (IPython, Spyder, Jupyter 
Notebook...).

In addition, a graphical gallery of examples (http://
scikit-image.org/docs/dev/auto_examples/), part of 
which is displayed in Fig.  6, showcases graphical exam-
ples of common image processing operations. The exam-
ples are organized as an array of thumbnails with a short 
title (see Fig.  6 left). These thumbnails link to the web-
page of the corresponding example, which features a 
mini-tutorial on the image processing method, the code 
needed to run the example, and the figure generated by 
the example. Since the graphical gallery is an efficient 
way to inform users about the features of scikit-
image, every new feature integrated in the package must 
include an example for the gallery. Longer tutorials and a 
more narrative documentation is available as well in the 
online User Guide of scikit-image. The User Guide 
explains in particular “big picture,” foundational aspects 
of scikit-image, such as its use of NumPy arrays as 
images, or how the package interacts with other parts of 
the scientific Python ecosystem.

Finally, tutorials on scikit-image are available in 
various places, either as YouTube videos, or in the SciPy 
Lecture Notes [55], a comprehensive online book of Sci-
entific Python tutorials.

Development and use of scikit‑image
Who uses scikit-image Estimating the number of active 
users of an open-source package is a difficult task. Down-
load statistics, for example, largely overestimate the num-
ber of active users, all the more if the package is bundled 
with others in a software distribution, such as Anaconda 
or Canopy. A view closer to reality can be obtained by 
analyzing the statistics of visits of the online help, avail-
able on the project website. As of the first half of 2016, 
20,000 unique visitors visited the scikit-image web-
site every month at http://scikit-image.org/, from 138 
countries.

The scikit-image paper of 2014 [54] has been cited 
by 120 research works (as of August 2016, according to 
Google Scholar), among which are studies that used 
X-ray imaging in fields such as medical imaging [6, 30, 
49], materials science [7], or geoscience [47].
Development process scikit-image is developed by 
a diverse team of volunteers. More than 170 individu-
als have contributed to the package. The large number 
of developers and users  is key to project’s sustainabil-
ity. The development process takes place on GitHub 
https://github.com/scikit-image/scikit-image, where 
users and developers propose and discuss new contri-
butions, report bugs, or submit ideas for improvements. 
A release cycle of one or two releases every year ensures 
that new features are propagated to users on a regular 
basis.

Discussion—current limitations and challenges
While we emphasize the assets of scikit-image for 
processing X-ray images, one should be aware of current 
limitations.
Speed of execution Although scikit-image 
approaches the speed of execution of compiled (C++, 
Java) code, it cannot reach the performance of code opti-
mized for the GPU, or the hand-tuned CPU-specific 
optimizations found in OpenCV [40]. At the moment, 
scikit-image is not the best tool for ultrafast com-
putations where the workflow is known beforehand, 
simple, and stable. However, it is an excellent tool for 
exploring image data interactively and testing different 
algorithms—an important component of data processing 
in scientific work, and its speed of execution is sufficient 
for processing gigabyte-sized tomographic images in sec-
onds to minutes. Moreover, the multiprocessing capabil-
ity of scikit-image is likely to improve in the near 
future.
3D compatibility Currently, about two-thirds of 
scikit-image functions transparently handle 2D 
or 3D arrays, with the remainder limited to 2D analy-
sis, often unnecessarily. Improved support for 3D and 
higher-dimensional volumes is on the project roadmap.

http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/
https://github.com/scikit-image/scikit-image
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Documentation for domain-specific applications Some 
image processing libraries or applications address a spe-
cific scientific domain, such as CellProfiler [11, 28] for 
biological images. The documentation of such projects 
often showcases examples that are close to the experi-
ence of the targeted community. Since scikit-image 

is application-agnostic, applications such as tomographic 
imaging are not mentioned in detail in the documenta-
tion of scikit-image. A possible improvement would 
be to write comprehensive tutorials addressing specific 
communities, and to refer to these tutorials from the 
main scikit-image documentation.

Fig. 6  Gallery of examples of scikit-image. The gallery of examples consists of an array of thumbnails (left), which link to example webpages, 
each centered on a specific image processing task. Each webpage includes Python code generating a figure, the figure itself, and a short tutorial 
explaining the image processing operations and the code
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Getting started
Scientists interested in experimenting with scikit-
image are invited to read the installation instruc-
tions at http://scikit-image.org/docs/stable/install.html. 
scikit-image can be installed either bundled in a 
Scientific Python distribution, such as Anaconda (conda 
command line) or Canopy, or stand alone (along with its 
dependencies) using a installer/packager such as pip or 
Ubuntu’s Aptitude.

The Getting Started section of the online User Guide 
(http://scikit-image.org/docs/dev/user_guide/getting_
started.html) provides a good launch pad for beginners, 
and gently leads into other sections of the user guide. A 
gallery of examples (http://scikit-image.org/docs/dev/
auto_examples/) lets users find applications close to their 
needs. Although most examples in the gallery use 2D 
images, many are applicable to 3D images as well.

Assistance on matters not covered by the documen-
tation is provided on the dedicated mailing-list scikit-
image@googlegroups.com or on Stack Overflow http://
stackoverflow.com/questions/tagged/scikit-image.

Conclusions
scikit-image offers a wide variety of image process-
ing algorithms, using a simple interface natively com-
patible with 2D and 3D images. It is well integrated into 
the Scientific Python ecosystem, so that it interfaces well 
with visualization libraries and other data processing 
packages. scikit-image has seen tremendous growth 
since its creation in 2009, both in terms of users and 
included features. In addition to the growing number of 
scientific teams that use scikit-image for processing 
images of various X-ray modalities, domain-specific tools 
are now using scikit-image as a dependency to build 
upon. Examples include tomopy [23] for tomographic 
reconstruction or DIOPTAS [39] for the reduction and 
exploration of X-ray diffraction data. It is likely that more 
application-specific software will benefit from depend-
ing on scikit-image in the future, since scikit-
image strives to be domain-agnostic and to keep the 
function interface stable. On the end-user side, future 
work includes better integration of parallel process-
ing capabilities, completion of full 3D compatibility, an 
enriched narrative documentation, speed enhancements, 
and expansion of the set of supported algorithms.

Authors’ contributions
EG, JNI, and SvdW conducted the research and wrote the paper. All authors 
read and approved the final manuscript.

Author details
1 Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervil‑
liers, France. 2 Victorian Life Sciences Computation Initiative, University of Mel‑
bourne, Carlton, VIC, Australia. 3 Division of Applied Mathematics, Stellenbosch 
University, Stellenbosch, South Africa. 

Acknowledgements
The authors gratefully acknowledge the work of the contributors of scikit-
image, and thank S. Deville and D. Vandembroucq for a careful reading of the 
paper and useful suggestions. E. Gouillart acknowledges the support of ANR 
project EDDAM ANR-11-BS09-027. CREMI (https://cremi.org/data/) is acknowl‑
edged for the membrane image of Fig. 5b.

Competing interests
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as potential 
competing interests.

Received: 26 August 2016   Accepted: 24 November 2016

References
	1.	 Abràmoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ. 

Biophotonics Int 11(7), 36–42 (2004)
	2.	 Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC 

superpixels compared to state-of-the-art superpixel methods. IEEE Trans 
Pattern Anal Mach Intell 34(11), 2274–2282 (2012)

	3.	 Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., 
Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al.: PHENIX: 
a comprehensive python-based system for macromolecular structure 
solution. Acta Crystallogr D Biol Crystallogr 66(2), 213–221 (2010)

	4.	 Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J.P., Karkoulis, D., Picca, F.E., 
Kieffer, J.: The fast azimuthal integration Python library: pyFAI. J Appl 
Crystallogr 48(2), 510–519 (2015)

	5.	 Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: 
Cython: the best of both worlds. Comput Sci Eng 13(2), 31–39 (2011)

	6.	 Blackledge, M.D., Collins, D.J., Koh, D.-M., Leach, M.O.: Rapid develop‑
ment of image analysis research tools: bridging the gap between 
researcher and clinician with pyOsiriX. Comput Biol Med 69, 203–212 
(2016)

	7.	 Bouttes, D., Lambert, O., Claireaux, C., Woelffel, W., Dalmas, D., Gouillart, E., 
Lhuissier, P., Salvo, L., Boller, E., Vandembroucq, D.: Hydrodynamic coarsen‑
ing in phase-separated silicate melts. Acta Mater 92, 233–242 (2015)

	8.	 Brookhaven National Lab: NSLS-II. http://nsls-ii.github.io/ (2016). Accessed 
Aug 2016

	9.	 Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., Tromba, G.: Pore3D: 
a software library for quantitative analysis of porous media. Nucl Instrum 
Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 615(3), 
326–332 (2010)

	10.	 Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. 
In: IEEE Computer Society Conference on computer vision and pattern 
recognition, 2005. CVPR 2005. vol. 2, pp. 60–65. IEEE (2005). doi:10.1109/
CVPR.2005.38

	11.	 Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, 
O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al.: CellProfiler: 
image analysis software for identifying and quantifying cell phenotypes. 
Genome Biol 7(10), 100 (2006)

	12.	 Chambolle, A.: An algorithm for total variation minimization and applica‑
tions. J Math Imaging Vis 20(1–2), 89–97 (2004)

	13.	 ChumpusRex, Wikipedia: Typical screen layout of workstation software 
used for reviewing multi-detector CT studies. https://en.wikipedia.org/
wiki/File:Ct-workstation-neck.jpg (2016). Accessed Aug 2016

	14.	 Coelho, P.: Mahotas: open source software for scriptable computer vision. 
J Open Res Softw 1, 1 (2013)

	15.	 Coutinho, T.: PyTango. http://www.esrf.eu/computing/cs/tango/tango_
doc/kernel_doc/pytango/latest/index.html (2016). Accessed Aug 2016

	16.	 Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filter‑
ing applied to electron cryomicroscopy. In: 2008 5th IEEE International 
Symposium on biomedical imaging: from nano to macro, pp. 1331–1334. 
IEEE (2008). doi:10.1109/ISBI.2008.4541250

	17.	 De Nolf, W., Vanmeert, F., Janssens, K.: XRDUA: crystalline phase distribu‑
tion maps by two-dimensional scanning and tomographic (micro) x-ray 
powder diffraction. J Appl Crystallogr 47(3), 1107–1117 (2014)

http://scikit-image.org/docs/stable/install.html
http://scikit-image.org/docs/dev/user%5fguide/getting%5fstarted.html
http://scikit-image.org/docs/dev/user%5fguide/getting%5fstarted.html
http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/docs/dev/auto%5fexamples/
http://stackoverflow.com/questions/tagged/scikit-image
http://stackoverflow.com/questions/tagged/scikit-image
https://cremi.org/data/
http://nsls-ii.github.io/
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2005.38
https://en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg
https://en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg
http://www.esrf.eu/computing/cs/tango/tango%5fdoc/kernel%5fdoc/pytango/latest/index.html
http://www.esrf.eu/computing/cs/tango/tango%5fdoc/kernel%5fdoc/pytango/latest/index.html
http://dx.doi.org/10.1109/ISBI.2008.4541250


Page 11 of 11Gouillart et al. Adv Struct Chem Imag  (2016) 2:18 

	18.	 Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image seg‑
mentation. Int J Comput Vis 59(2), 167–181 (2004)

	19.	 Fraunhofer Institute for Industrial Mathematics ITWM: MAVI. http://www.
itwm.fraunhofer.de/en/departments/image-processing/microstructure-
analysis/mavi.html (2016). Accessed Aug 2016

	20.	 Getreuer, P.: Rudin–Osher–Fatemi total variation denoising using split 
Bregman. Image Process Line 2, 74–95 (2012)

	21.	 Gouillart, E., Toplis, M.J., Grynberg, J., Chopinet, M.-H., Sondergard, E., 
Salvo, L., Suéry, M., Di Michiel, M., Varoquaux, G.: In situ synchrotron 
microtomography reveals multiple reaction pathways during soda-lime 
glass synthesis. J Am Ceram Soc 95(5), 1504–1507 (2012)

	22.	 Grady, L.: Random walks for image segmentation. IEEE Trans Pattern Anal 
Mach Intell 28(11), 1768–1783 (2006). doi:10.1109/TPAMI.2006.233

	23.	 Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: TomoPy: a framework for the 
analysis of synchrotron tomographic data. J Synchrotron Radiat 21(5), 
1188–1193 (2014)

	24.	 Hunter, J.D., et al.: Matplotlib: a 2D graphics environment. Comput Sci Eng 
9(3), 90–95 (2007)

	25.	 Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int J 
Comput Vis 1(4), 321–331 (1988)

	26.	 Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, 
J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., et al.: Jupyter notebooks—a 
publishing format for reproducible computational workflows. In: Position‑
ing and Power in Academic Publishing: Players, Agents and Agendas, p. 
87 (2016). doi:10.3233/978-1-61499-649-1-87

	27.	 Knudsen, E.B., Sørensen, H.O., Wright, J.P., Goret, G., Kieffer, J.: Fabio: easy 
access to two-dimensional x-ray detector images in python. J Appl 
Crystallogr 46(2), 537–539 (2013)

	28.	 Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E., et al.: CellprofilerTM: free, 
versatile software for automated biological image analysis. Biotechniques 
42(1), 71 (2007)

	29.	 Maire, E., Withers, P.: Quantitative x-ray tomography. Int Mater Rev 59(1), 
1–43 (2014)

	30.	 Malan, D.F., van der Walt, S.J., Raidou, R.G., van den Berg, B., Stoel, B.C., 
Botha, C.P., Nelissen, R.G., Valstar, E.R.: A fluoroscopy-based planning and 
guidance software tool for minimally invasive hip refixation by cement 
injection. Int J Comput Assist Radiol Surg 11(2), 281–296 (2016)

	31.	 Marone, F., Münch, B., Stampanoni, M.: Fast reconstruction algorithm 
dealing with tomography artifacts. In: Proceedings of SPIE developments 
in X-Ray tomography VII, vol. 7804. International Society for Optics and 
Photonics, pp. 780410 (2010). doi:10.1117/12.859703

	32.	 Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., Kieffer, J.: The PyHST2 hybrid 
distributed code for high speed tomographic reconstruction with itera‑
tive reconstruction and a priori knowledge capabilities. Nucl Instrum 
Methods Phys Res Sect B Beam Interact Mater At 324, 41–48 (2014)

	33.	 Nunez-Iglesias, J., Beaumont, C., Robitaille, T.P.: Counting programming 
language mentions in astronomy papers (Late 2016 version). doi:10.5281/
zenodo.163863. https://github.com/jni/programming-languages-in-
astronomy/blob/1.1/programming-languages-in-ADS.ipynb (2016). 
Accessed Aug 2016

	34.	 Oliphant, T.E.: Python for scientific computing. Comput Sci Eng 9(3), 
10–20 (2007)

	35.	 Pawlik, A., Segal, J., Sharp, H., Petre, M.: Crowdsourcing scientific software 
documentation: a case study of the NumPy documentation project. 
Comput Sci Eng 17(1), 28–36 (2015)

	36.	 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: 
machine learning in Python. J Mach Learn Res 12, 2825–2830 (2011)

	37.	 Pérez, F., Granger, B.E.: IPython: a system for interactive scientific comput‑
ing. Comput Sci Eng 9(3), 21–29 (2007)

	38.	 Perez, F., Granger, B.E., Hunter, J.D.: Python: an ecosystem for scientific 
computing. Comput Sci Eng 13(2), 13–21 (2011)

	39.	 Prescher, C., Prakapenka, V.B.: DIOPTAS: a program for reduction of two-
dimensional x-ray diffraction data and data exploration. High Press Res 
35(3), 223–230 (2015)

	40.	 Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer 
vision with OpenCV. Commun ACM 55(6), 61–69 (2012)

	41.	 Rack, A., Scheel, M., Hardy, L., Curfs, C., Bonnin, A., Reichert, H.: Exploiting 
coherence for real-time studies by single-bunch imaging. J Synchrotron 
Radiat 21(4), 815–818 (2014)

	42.	 Ramachandran, P., Varoquaux, G.: Mayavi: 3d visualization of scientific 
data. Comput Sci Eng 13(2), 40–51 (2011)

	43.	 Rocklin, M.: Dask contributors: dask. http://dask.pydata.org/en/latest/ 
(2016). Accessed Aug 2016

	44.	 Rossant, C.: Learning IPython for interactive computing and data visuali‑
zation. Packt Publishing Ltd, Birmingham (2015)

	45.	 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, 
T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-
source platform for biological-image analysis. Nat Methods 9(7), 676–682 
(2012)

	46.	 Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The ImageJ ecosys‑
tem: an open platform for biomedical image analysis. Mol Reprod Dev 
82(7–8), 518–529 (2015)

	47.	 Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of 
multiphase images obtained via x-ray microtomography: a review. Water 
Resour Res 50(4), 3615–3639 (2014)

	48.	 Schneider, C.A., Rasband, W.S., Eliceiri, K.W., et al.: NIH Image and ImageJ: 
25 years of image analysis. Nat Methods 9(7), 671–675 (2012)

	49.	 Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional 
neural networks for lung nodule classification. In: International Confer‑
ence on Information Processing in Medical Imaging, pp. 588–599. 
Springer (2015). doi:10.1007/978-3-319-19992-4_46

	50.	 Solé, V., Papillon, E., Cotte, M., Walter, P., Susini, J.: A multiplatform code for 
the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim 
Acta Part B At Spectrosc 62(1), 63–68 (2007)

	51.	 Sugandhi, R., Swamy, R., Khirwadkar, S.: Use of epics and python technol‑
ogy for the development of a computational toolkit for high heat flux 
testing of plasma facing components. Fusion Eng Des 112, 783–787 
(2016)

	52.	 V. Armando Sole: PyMca. https://github.com/vasole/pymca (2016). 
Accessed Aug 2016

	53.	 Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure 
for efficient numerical computation. Comput Sci Eng 13(2), 22–30 (2011)

	54.	 Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, 
J.D., Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python. 
PeerJ 2, e453 (2014)

	55.	 Varoquaux, G., Gouillart, E., Vahtras, O., scipy-lecture-notes contributors: 
Scipy lecture notes. http://www.scipy-lectures.org/ (2016). Accessed 10 
Aug 2016

http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://dx.doi.org/10.1109/TPAMI.2006.233
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1117/12.859703
https://github.com/jni/programming-languages-in-astronomy/blob/1.1/programming-languages-in-ADS.ipynb
https://github.com/jni/programming-languages-in-astronomy/blob/1.1/programming-languages-in-ADS.ipynb
http://dask.pydata.org/en/latest/
http://dx.doi.org/10.1007/978-3-319-19992-4_46
https://github.com/vasole/pymca
http://www.scipy-lectures.org/

	Analyzing microtomography data with Python and the scikit-image library
	Abstract 
	Background
	Overview and first steps
	The Python ecosystem
	Image processing capabilities

	Documentation
	Development and use of scikit-image
	Discussion—current limitations and challenges
	Getting started
	Conclusions
	Authors’ contributions
	References




