
Gouillart et al. Adv Struct Chem Imag (2016) 2:18
DOI 10.1186/s40679-016-0031-0

RESEARCH

Analyzing microtomography data
with Python and the scikit‑image library
Emmanuelle Gouillart1*, Juan Nunez‑Iglesias2 and Stéfan van der Walt3

Abstract 

The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modali‑
ties. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source
image processing toolkit for the Python language that supports a large variety of file formats and is compatible with
2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions
according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users
benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or
machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and
the scalable performance required for the high-throughput analysis of X-ray imaging data.

Keywords:  Scikit-image, Python, Image processing library, 3D image

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
The acquisition time of synchrotron tomography images
has decreased dramatically over the last decade, from
hours to seconds [29]. New modalities such as single-
bunch imaging provide a time resolution down to the
nanosecond for radiography [41]. However, the time
subsequently spent in processing the images has not
decreased as much, so that the outcome of a success-
ful synchrotron imaging run often takes weeks or even
months to be transformed into scientific results.

Transforming billions of pixels and voxels to a few
meaningful figures represents a tremendous data reduc-
tion. Often, the sequence of operations needed to pro-
duce these data is not known beforehand, or might be
altered due to artifacts [31], or to an unforeseen evolu-
tion of the sample. Image processing necessarily involves
trial and error phases to choose the processing work-
flow. Therefore, image processing tools need to offer at
the same time enough flexibility of use, a variety of algo-
rithms, and efficient implementations to allow for fast
iterations while adjusting the workflow.

Several software applications and libraries are avail-
able to synchrotron users to process their images.
ImageJ [1, 48] and its distribution Fiji [45] is a popu-
lar general-purpose tool for 2D and 3D images, thanks
to its intuitive menus and graphical tools, and the
wealth of plugins contributed by a vivid community
[46]. Software specialized in analyzing synchrotron
data is available as well, such as XRDUA [17] for dif-
fraction images obtained in powder diffraction analysis,
or for 3D images, commercial tools such as Avizo 3D
software (TM), or ToolIP/MAVIkit [19] are appreci-
ated for an intuitive graphical pipeline and advanced
3D visualization. Some synchrotrons have even devel-
oped their own tools for volume processing, such as
Pore3D [9] at the Elettra facility. Alternatively, the use
of a programming language gives finer control, better
reproducibility, and more complex analysis possibili-
ties, provided classical processing algorithms can be
called from libraries—thereby limiting the complexity
of the programming task and the risk of bugs. Matlab
(TM) and its image processing toolbox are popular in
the academic community of computer vision and image
processing. The Python language is widely used in the
scientific world and in synchrotron facilities. As a gen-
eral-purpose language, Python is used in synchrotrons
to control device servers [8, 15, 51], to access raw data

Open Access

*Correspondence: emmanuelle.gouillart@nsup.org
1 Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,
93303 Aubervilliers, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-016-0031-0&domain=pdf

Page 2 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

of X-ray detectors [27], to reconstruct tomography vol-
umes from radiographs [23, 32], and in data process-
ing packages for macromolecular crystallography [3],
azimuthal integration of diffraction data [4], or fluores-
cence analysis [50, 52].
scikit-image [54] is a general-purpose image

processing library for the Python language, and a com-
ponent of the ecosystem of Python scientific modules
commonly known as Scientific Python [34]. Like the rest
of the ecosystem, scikit-image is released under
a permissive open-source license and is available free
of charge. Most of scikit-image is compatible with
both 2D and 3D images, so that it can be used for a large
number of imaging modalities, such as microscopy,
radiography, or tomography. In this article, we explain
how scikit-image can be used for processing data
acquired in X-ray imaging experiments, with a focus
on microtomography 3D images. This article does not
intend to be a pedagogical tutorial on scikit-image
for X-ray imaging, but rather to explain the rationale
behind the package, and provide various examples of its
capabilities.

Overview and first steps
In this section, we provide a short overview of the typi-
cal use patterns of scikit-image, illustrated by short
snippets of code. Since Python is a programming lan-
guage, the user interacts with data objects and images
through code, which is either entered and executed in an
interactive interpreter, or written in text files (so-called
scripts) that are executed.

Images are manipulated as numerical arrays, each with
a single, uniform data type. This common format guaran-
tees interoperability with other libraries and straightfor-
ward access to and interpretation of computer memory.
The N-dimensional (2D, 3D, ...) numerical array object is
provided by the NumPy module [53].

In image processing in Python, one of the first tasks
then is to generate NumPy arrays, which is often achieved
by reading data from files. We read one 2-dimensional
image from a file and display it as follows:

skimage is the name under which scikit-image
is imported in Python code. Note that functions (such
as imread that reads an image file, or imshow that
displays an image) are found in thematic submodules of
skimage, such as io for Input/Output.

A stack of 2D images, such as tomography slices gener-
ated by a reconstruction algorithm, can be opened as an
image collection or a 3D array:

 Raw data formats can be opened using the NumPy
functions fromfile (to load the array into memory) or
memmap (to keep the array on disk). The following code
creates an array from a raw image file of unsigned 16-bit
integers with a header of 1024 bytes:

 For every raw data specification, it is thus very easy
to write a reader using np.memmap (see for example
https://github.com/jni/python-redshirt). hdf5 files are
accessed using modules such as h5py, pytables.
scikit-image has a simple Application Program-

ming Interface (API), based almost exclusively on
functions. Most functions take an image (i.e., a multi-
dimensional array) as an input parameter:

Optional parameters can be passed as Python keyword
arguments, in addition to the image parameter.

 A few functions require several arrays to be passed,
such as the watershed segmentation algorithm that takes
as parameters the image to be segmented, and an image
of markers from which labels are propagated:

 Therefore, the image processing workflow can be
seen as a directed graph (a richer structure than a lin-
ear pipeline), where nodes are image-shaped arrays, and
edges are functions of scikit-image transforming the
arrays (see Fig. 1).

Most functions transparently handle 2D, 3D, or even
higher-dimensional images as arguments, so the same

https://github.com/jni/python-redshirt

Page 3 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

functions can be used to process tomography, micros-
copy, or natural images. The rest raise an error when
passed a 3D argument:

 However, the proportion of functions supporting 3D
images is always increasing, thanks to the many contribu-
tors to the library.

While the majority of functions return processed
images, returns can also be numerical value(s) such as
pixel coordinates of objects of interest or statistical infor-
mation about the image:

The Python ecosystem
The benefits of scikit-image for image processing
come not only from the features of the package alone, but
also from the rich environment surrounding scientific

Python [34, 38]. Figure 1 illustrates how several com-
ponents of this ecosystem combine into a sophisticated
image processing workflow.
NumPy arrays are the cornerstone of the Scientific
Python ecosystem, and of scikit-image operations in
particular. NumPy “one-liners” include cropping or down-
sampling an image, or retrieving pixels corresponding
to a given label in a segmentation. To illustrate the com-
pactness of NumPy code, consider modifying pixel values
below a threshold. This operation can be written as

exploiting the ability to index arrays with boolean arrays,
also called masking. NumPy uses memory sparingly and
avoids making new copies of arrays whenever possible, an
important requirement when dealing with the gigabyte-sized
images of tomography. For example, cropping a subvolume
as follows does not create a copy of the original array

but instead refers to the correct memory offsets in the
original.

Fig. 1  scikit-image and the Scientific Python ecosystem. Images are opened from files as NumPy arrays. Functions of scikit-image
transform image arrays into other arrays with the same dimensions, or into arrays of numbers corresponding to features of the image. The output of
scikit-image functions can be passed to other Python modules relying on NumPy arrays, such as SciPy or scikit-learn. Image-shaped arrays
are transformed into visualizations with matplotlib (2D) or Mayavi (3D). A variety of environments is available for code development and
execution, from classical IDEs to Jupyter notebooks

Page 4 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

Interpreter and development environment While several
interpreters are available to execute Python instructions
and scripts interactively, the most popular in the scien-
tific world is IPython [37, 44]. IPython is an advanced
interpreter, which integrates syntax highlighting, text
auto-completion, a debugger, introspection and profiling
methods, and online help. Several integrated develop-
ment environments (IDEs) come bundled with IPython,
together with other components such as a text editor.
Notable examples include Spyder (Fig. 2), PyCharm, and
Visual Studio Code.

The Jupyter notebook [26] is a web application that
grew out of the IPython project. Jupyter notebooks pro-
vide an interactive development environment within a
web browser, where live code can be enriched by explan-
atory text, equations, and visualizations (Fig. 3). Jupyter
notebooks render directly as webpages on GitHub, mak-
ing them a straightforward tool to publish online a script
and its output. As of July 2016, more than 500,000 Jupy-
ter notebooks were posted on GitHub, demonstrating
their wide adoption by the community as workflow-shar-
ing tools (http://archive.ipython.org/media/SciPy2016Ju-
pyterLab.pdf).
Visualization libraries Visualizing images is an impor-
tant component of the image processing workflow, used
to inspect the final result and to adjust the parameters of
intermediate processing operations. matplotlib [24]
is the most popular 2D plotting library of the Python eco-
system. It can be used to visualize 2D data such as color
or grayscale images, and 1D data such as contour lines,
outlines of segmented regions, histograms of gray levels.
Although matplotlib has simple 3D plotting capabili-
ties, we recommend using the mayavi module [42] for
applications requiring advanced 3D visualization, such
as tomography. mayavi is based on the VTK toolkit.
It exposes a simple API for visualizing data passed as
numpy arrays. For example, visualizing the surface of
binary data can be written as

(see Fig. 4 for the resulting visualization).
For more advanced visualizations, a large majority of

VTK capabilities can be accessed through mayavi’s pipe-
line API. mayavi offers a good trade-off between sim-
plicity of use for common operations, and accessibility
to more sophisticated capabilities such as responsive
visualizations.

Advanced toolkits for signal processing and data science
scikit-image is only one Python module that can
be used for data processing, among many others. A very
popular module is scikit-learn [36], a Python mod-
ule for machine learning using NumPy arrays. Local fea-
tures of an image (such as local statistics of gray levels,
or geometric points of interest) or features of segmented
objects (e.g., geometrical and intensity characteristics
of segmented particles) can be extracted with functions
from skimage.feature (see Fig. 1). It is then possible
to use a classification algorithm from scikit-learn
to label pixels (a segmentation task) or to classify whole
images or objects that have already been segmented. The
near-universal use of NumPy arrays ensures the inter-
operability between these packages, so that just a few
lines of code are sufficient to create these sophisticated
workflows.

The modularity of the Scientific Python ecosystem may
be confusing at first sight, but the core modules of this
ecosystem are almost perfectly compatible, thanks to the
shared use of NumPy arrays and common development
practices (although they are developed in parallel by dif-
ferent teams). Several “distributions,” such as Anaconda
or Canopy, bundle together the most popular libraries,
including scikit-image.

Image processing capabilities
Capabilities scikit-image offers most classi-
cal image processing operations, such as exposure
and color adjustment, filtering, segmentation, feature
extraction, geometric transformations, and measure-
ments of region characteristics. In addition to com-
mon operations, some advanced algorithms are also
implemented; a selection of which is illustrated in Fig. 5.
In the following, we briefly illustrate how scikit-
image can be used for some typical image processing
tasks encountered when analyzing tomographic images:
denoising, mid-range feature detection, segmentation,
and measurement of region properties. For the sake of
brevity, other tasks such as contrast manipulation or
geometric transformations are not described here; the
interested reader is referred to the documentation of
scikit-image.

Tomographic images often suffer from artifacts or poor
signal-to-noise ratio. Therefore, denoising data is often
the first step of an image processing workflow. Several
denoising filters are available for restoring these images,
ranging from general-purpose median and bilateral filters
to those more suited to specific applications. For exam-
ple, total-variation denoising [12, 20] is ideal for restoring
piecewise-constant images (see Fig. 5a), such as images
with a small number of phases encountered in materials

http://archive.ipython.org/media/SciPy2016JupyterLab.pdf
http://archive.ipython.org/media/SciPy2016JupyterLab.pdf

Page 5 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

science [7]. Conversely, images with a fine-grained tex-
ture are better preserved with non-local means denois-
ing, a patch-based algorithm [10] (see Fig. 5a).

Detecting the presence of objects or extracting pixels
corresponding to objects (a task known as segmenta-
tion) is an important task of image analysis for medical
or materials science applications. scikit-image offers
a wide variety of functions for detecting geometrical
features of interest in an image. In order to detect thin
boundaries, the ridges of an image can be identified
as regions for which the leading eigenvalue of the local
Hessian matrix is high (see Fig. 5b). In the Fourier space,
peaks in 2D Bragg diffraction patterns can be extracted
using blob detection methods [4], such as the Laplacian
of Gaussian method (see Fig. 5b).
Segmentation of regions of interest can be achieved using
one of the various strategies, depending on the char-
acteristics of the image. Images with a clear contrast
between regions can be segmented automatically, thanks
to several thresholding algorithms, including an adaptive
local thresholding algorithm aimed at images with con-
trast variations. Super-pixel algorithms [2, 18] create an
over-segmentation of images in super-pixels, by grouping
pixels that are close together both in color- and spatial
distance (see Fig. 5c). Region-growing algorithms, such as
the morphological watershed or the random walker [22],

propagate the labels of user-defined markers through the
image (see Fig. 5c). The active contour algorithm [25] fits
snake contours to features of the image, such as edges or
high-brightness regions.

Following segmentation, the characteristics of labeled
regions (particles, porosities, organs, …) resulting from
a segmentation can be measured using the measure
submodule. The different connected components (e.g.,
bubbles or non-touching particles) of a binary image
are labeled with the measure.label function. Prop-
erties of labeled regions such as size, extent, center of
mass, or mean intensity value are accessed with meas-
ure.regionprops (see Fig. 5d). Local characteristics
of a region can be retrieved as well: Fig. 5d shows how
the local diameter of open porosity is measured by com-
bining a skeletonization of the porosity channels, and the
distance transforms to the other phase measured on the
skeleton.
Performance Given the large size of tomography datasets,
the execution speed of image processing operations is of
critical concern. scikit-image relies mostly on calls
to NumPy operations, of which most are performed in
optimized compiled code (C or Fortran). Performance-
critical parts of scikit-image that cannot call effi-
cient NumPy code are implemented in Cython. Cython
[5] is an extension of the Python language that supports

Fig. 2  The Spyder IDE integrates a text editor (with syntax highlighting), the IPython interpreter, as well as a panel for code introspection (online
help, variable explorer, ...)

Page 6 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

explicit type declarations, and is compiled directly to C.
Therefore, the performance of scikit-image can be
close to the one of the libraries written in a compiled
language such as C++ or Java. For example, comput-
ing the watershed segmentation of a 2000 × 2000 array

of floats into 1000 regions took about 1 s using 1 CPU
of an off-the-shelf laptop, and 10 s for a 256 × 256 × 256
image segmented into 2000 regions. Similar timescales
were obtained with mahotas, a Python package imple-
mented exclusively in C++ [14] (with a slight advantage
for mahotas).

However, basic scikit-image code runs on a sin-
gle core. Computing workstations and servers used for
X-ray imaging typically have several tens of cores. Par-
allelization of the computing workflow can be achieved
in multiple ways. The most trivial parallelization scheme
consists of applying the same workflow to different
images, on different cores. However, finer-grained paral-
lelization is preferable when prototyping the processing
workflow.

An easy solution consists in dividing an image into
smaller images (with or without overlap, depending on
the operation), and to apply the same operation on the
different sub-images, on different cores. Creating over-
lapping chunks is easy with the dedicated function
view_as_windows (or view_as_blocks for con-
tiguous non-overlapping chunks):

Fig. 3  The Jupyter notebook allows mixing of computer code (top), plot and text output (middle), and free-form narrative text (bottom). This makes
it ideal to record and report code-based analyses. Screenshot from [33]

Fig. 4  Simple 3D visualization realized with Mayavi

Page 7 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

 The joblib library enables easy parallel processing.
Looping over the different blocks, and dispatching the
computation over several cores, is realized with the fol-
lowing syntax:

 scikit-image also offers experimental support for
a more integrated parallel processing pipeline, thanks to
the dask [43] module:

The size of chunks is determined automatically from the
number of available cpus, or can be specified by the user.

Caching provides another tool to speed up data analy-
sis. A situation that often arises is that, while prototyp-
ing a workflow, scripts (containing the image processing
pipeline) are run several times to experiment with param-
eters. joblib provides a caching mechanism that avoids
the repetition of function calls, if their arguments have
not changed:

Fig. 5  Typical image processing operations with scikit-image. Data are synthetic, unless stated otherwise. a Filtering−Top non-local means
denoising of an image with a fine-grained texture, acquired by in situ synchrotron microtomography during glass melting [21]. Bottom total-
variation denoising of an image with two phases, corresponding to phase-separating silicate melts observed by in situ tomography [7]. b Feature
extraction−Top Hubble deep field (NASA, public domain), blob detection using the Laplacian of Gaussian method. Bottom ridge detection using
the leading eigenvalue of the Hessian matrix, neuron image from CREMI challenge (https://cremi.org/data/). c Segmentation—Top super-pixel
segmentation of a CT slice of the human head [13], using Felzenszwalb’s algorithm [18]. Bottom random walker segmentation (right) of noisy image
(top-left corner), using histogram-determined markers (bottom-left corner). d Measures—Top visualization of local diameter (color-coded on the
skeleton curve) of an interconnected phase (represented in violet). Bottom particles color-coded according to their extent

https://cremi.org/data/

Page 8 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

Finally, we note that the biggest performance improve-
ments often come from the improvement of algorithms
(as opposed to computing architectures only). For exam-
ple, non-local means denoising [10] is a costly operation,
since it requires several nested loops, on all pixels and
on neighboring patches to be compared with the pixel-
centered patch. Thanks to the implementation of a more
recent algorithm [16] that modifies the internal organi-
zation of loops, it was possible to improve the execution
time by a factor of roughly ten times. The large size of the
scikit-image community makes it likely for algorith-
mic improvements to be discussed regularly. During the
code review process, a close watch is also kept on mem-
ory consumption, since for large image sizes, transfers
between computer memory (RAM) and CPU cache are
often a serious performance bottleneck.

Documentation
The quality of software documentation is (perhaps
especially) important in software aimed at scientists.
scikit-image users have access to several kinds of
documentation. All functions are documented using
the NumPy documentation standard [35], which is uni-
versal across all major Scientific Python packages. The
standard includes a description of all input and output
variables and their data types, together with explanations
of what each function does and how to use it. Function
documentation is accessible online or within the devel-
opment environment itself (IPython, Spyder, Jupyter
Notebook...).

In addition, a graphical gallery of examples (http://
scikit-image.org/docs/dev/auto_examples/), part of
which is displayed in Fig. 6, showcases graphical exam-
ples of common image processing operations. The exam-
ples are organized as an array of thumbnails with a short
title (see Fig. 6 left). These thumbnails link to the web-
page of the corresponding example, which features a
mini-tutorial on the image processing method, the code
needed to run the example, and the figure generated by
the example. Since the graphical gallery is an efficient
way to inform users about the features of scikit-
image, every new feature integrated in the package must
include an example for the gallery. Longer tutorials and a
more narrative documentation is available as well in the
online User Guide of scikit-image. The User Guide
explains in particular “big picture,” foundational aspects
of scikit-image, such as its use of NumPy arrays as
images, or how the package interacts with other parts of
the scientific Python ecosystem.

Finally, tutorials on scikit-image are available in
various places, either as YouTube videos, or in the SciPy
Lecture Notes [55], a comprehensive online book of Sci-
entific Python tutorials.

Development and use of scikit‑image
Who uses scikit-image Estimating the number of active
users of an open-source package is a difficult task. Down-
load statistics, for example, largely overestimate the num-
ber of active users, all the more if the package is bundled
with others in a software distribution, such as Anaconda
or Canopy. A view closer to reality can be obtained by
analyzing the statistics of visits of the online help, avail-
able on the project website. As of the first half of 2016,
20,000 unique visitors visited the scikit-image web-
site every month at http://scikit-image.org/, from 138
countries.

The scikit-image paper of 2014 [54] has been cited
by 120 research works (as of August 2016, according to
Google Scholar), among which are studies that used
X-ray imaging in fields such as medical imaging [6, 30,
49], materials science [7], or geoscience [47].
Development process scikit-image is developed by
a diverse team of volunteers. More than 170 individu-
als have contributed to the package. The large number
of developers and users is key to project’s sustainabil-
ity. The development process takes place on GitHub
https://github.com/scikit-image/scikit-image, where
users and developers propose and discuss new contri-
butions, report bugs, or submit ideas for improvements.
A release cycle of one or two releases every year ensures
that new features are propagated to users on a regular
basis.

Discussion—current limitations and challenges
While we emphasize the assets of scikit-image for
processing X-ray images, one should be aware of current
limitations.
Speed of execution Although scikit-image
approaches the speed of execution of compiled (C++,
Java) code, it cannot reach the performance of code opti-
mized for the GPU, or the hand-tuned CPU-specific
optimizations found in OpenCV [40]. At the moment,
scikit-image is not the best tool for ultrafast com-
putations where the workflow is known beforehand,
simple, and stable. However, it is an excellent tool for
exploring image data interactively and testing different
algorithms—an important component of data processing
in scientific work, and its speed of execution is sufficient
for processing gigabyte-sized tomographic images in sec-
onds to minutes. Moreover, the multiprocessing capabil-
ity of scikit-image is likely to improve in the near
future.
3D compatibility Currently, about two-thirds of
scikit-image functions transparently handle 2D
or 3D arrays, with the remainder limited to 2D analy-
sis, often unnecessarily. Improved support for 3D and
higher-dimensional volumes is on the project roadmap.

http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/
https://github.com/scikit-image/scikit-image

Page 9 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

Documentation for domain-specific applications Some
image processing libraries or applications address a spe-
cific scientific domain, such as CellProfiler [11, 28] for
biological images. The documentation of such projects
often showcases examples that are close to the experi-
ence of the targeted community. Since scikit-image

is application-agnostic, applications such as tomographic
imaging are not mentioned in detail in the documenta-
tion of scikit-image. A possible improvement would
be to write comprehensive tutorials addressing specific
communities, and to refer to these tutorials from the
main scikit-image documentation.

Fig. 6  Gallery of examples of scikit-image. The gallery of examples consists of an array of thumbnails (left), which link to example webpages,
each centered on a specific image processing task. Each webpage includes Python code generating a figure, the figure itself, and a short tutorial
explaining the image processing operations and the code

Page 10 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

Getting started
Scientists interested in experimenting with scikit-
image are invited to read the installation instruc-
tions at http://scikit-image.org/docs/stable/install.html.
scikit-image can be installed either bundled in a
Scientific Python distribution, such as Anaconda (conda
command line) or Canopy, or stand alone (along with its
dependencies) using a installer/packager such as pip or
Ubuntu’s Aptitude.

The Getting Started section of the online User Guide
(http://scikit-image.org/docs/dev/user_guide/getting_
started.html) provides a good launch pad for beginners,
and gently leads into other sections of the user guide. A
gallery of examples (http://scikit-image.org/docs/dev/
auto_examples/) lets users find applications close to their
needs. Although most examples in the gallery use 2D
images, many are applicable to 3D images as well.

Assistance on matters not covered by the documen-
tation is provided on the dedicated mailing-list scikit-
image@googlegroups.com or on Stack Overflow http://
stackoverflow.com/questions/tagged/scikit-image.

Conclusions
scikit-image offers a wide variety of image process-
ing algorithms, using a simple interface natively com-
patible with 2D and 3D images. It is well integrated into
the Scientific Python ecosystem, so that it interfaces well
with visualization libraries and other data processing
packages. scikit-image has seen tremendous growth
since its creation in 2009, both in terms of users and
included features. In addition to the growing number of
scientific teams that use scikit-image for processing
images of various X-ray modalities, domain-specific tools
are now using scikit-image as a dependency to build
upon. Examples include tomopy [23] for tomographic
reconstruction or DIOPTAS [39] for the reduction and
exploration of X-ray diffraction data. It is likely that more
application-specific software will benefit from depend-
ing on scikit-image in the future, since scikit-
image strives to be domain-agnostic and to keep the
function interface stable. On the end-user side, future
work includes better integration of parallel process-
ing capabilities, completion of full 3D compatibility, an
enriched narrative documentation, speed enhancements,
and expansion of the set of supported algorithms.

Authors’ contributions
EG, JNI, and SvdW conducted the research and wrote the paper. All authors
read and approved the final manuscript.

Author details
1 Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervil‑
liers, France. 2 Victorian Life Sciences Computation Initiative, University of Mel‑
bourne, Carlton, VIC, Australia. 3 Division of Applied Mathematics, Stellenbosch
University, Stellenbosch, South Africa.

Acknowledgements
The authors gratefully acknowledge the work of the contributors of scikit-
image, and thank S. Deville and D. Vandembroucq for a careful reading of the
paper and useful suggestions. E. Gouillart acknowledges the support of ANR
project EDDAM ANR-11-BS09-027. CREMI (https://cremi.org/data/) is acknowl‑
edged for the membrane image of Fig. 5b.

Competing interests
The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as potential
competing interests.

Received: 26 August 2016 Accepted: 24 November 2016

References
	1.	 Abràmoff, M.D., Magalhães, P.J., Ram, S.J.: Image processing with ImageJ.

Biophotonics Int 11(7), 36–42 (2004)
	2.	 Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC

superpixels compared to state-of-the-art superpixel methods. IEEE Trans
Pattern Anal Mach Intell 34(11), 2274–2282 (2012)

	3.	 Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N.,
Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al.: PHENIX:
a comprehensive python-based system for macromolecular structure
solution. Acta Crystallogr D Biol Crystallogr 66(2), 213–221 (2010)

	4.	 Ashiotis, G., Deschildre, A., Nawaz, Z., Wright, J.P., Karkoulis, D., Picca, F.E.,
Kieffer, J.: The fast azimuthal integration Python library: pyFAI. J Appl
Crystallogr 48(2), 510–519 (2015)

	5.	 Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.:
Cython: the best of both worlds. Comput Sci Eng 13(2), 31–39 (2011)

	6.	 Blackledge, M.D., Collins, D.J., Koh, D.-M., Leach, M.O.: Rapid develop‑
ment of image analysis research tools: bridging the gap between
researcher and clinician with pyOsiriX. Comput Biol Med 69, 203–212
(2016)

	7.	 Bouttes, D., Lambert, O., Claireaux, C., Woelffel, W., Dalmas, D., Gouillart, E.,
Lhuissier, P., Salvo, L., Boller, E., Vandembroucq, D.: Hydrodynamic coarsen‑
ing in phase-separated silicate melts. Acta Mater 92, 233–242 (2015)

	8.	 Brookhaven National Lab: NSLS-II. http://nsls-ii.github.io/ (2016). Accessed
Aug 2016

	9.	 Brun, F., Mancini, L., Kasae, P., Favretto, S., Dreossi, D., Tromba, G.: Pore3D:
a software library for quantitative analysis of porous media. Nucl Instrum
Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 615(3),
326–332 (2010)

	10.	 Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising.
In: IEEE Computer Society Conference on computer vision and pattern
recognition, 2005. CVPR 2005. vol. 2, pp. 60–65. IEEE (2005). doi:10.1109/
CVPR.2005.38

	11.	 Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman,
O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al.: CellProfiler:
image analysis software for identifying and quantifying cell phenotypes.
Genome Biol 7(10), 100 (2006)

	12.	 Chambolle, A.: An algorithm for total variation minimization and applica‑
tions. J Math Imaging Vis 20(1–2), 89–97 (2004)

	13.	 ChumpusRex, Wikipedia: Typical screen layout of workstation software
used for reviewing multi-detector CT studies. https://en.wikipedia.org/
wiki/File:Ct-workstation-neck.jpg (2016). Accessed Aug 2016

	14.	 Coelho, P.: Mahotas: open source software for scriptable computer vision.
J Open Res Softw 1, 1 (2013)

	15.	 Coutinho, T.: PyTango. http://www.esrf.eu/computing/cs/tango/tango_
doc/kernel_doc/pytango/latest/index.html (2016). Accessed Aug 2016

	16.	 Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filter‑
ing applied to electron cryomicroscopy. In: 2008 5th IEEE International
Symposium on biomedical imaging: from nano to macro, pp. 1331–1334.
IEEE (2008). doi:10.1109/ISBI.2008.4541250

	17.	 De Nolf, W., Vanmeert, F., Janssens, K.: XRDUA: crystalline phase distribu‑
tion maps by two-dimensional scanning and tomographic (micro) x-ray
powder diffraction. J Appl Crystallogr 47(3), 1107–1117 (2014)

http://scikit-image.org/docs/stable/install.html
http://scikit-image.org/docs/dev/user%5fguide/getting%5fstarted.html
http://scikit-image.org/docs/dev/user%5fguide/getting%5fstarted.html
http://scikit-image.org/docs/dev/auto%5fexamples/
http://scikit-image.org/docs/dev/auto%5fexamples/
http://stackoverflow.com/questions/tagged/scikit-image
http://stackoverflow.com/questions/tagged/scikit-image
https://cremi.org/data/
http://nsls-ii.github.io/
http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2005.38
https://en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg
https://en.wikipedia.org/wiki/File:Ct-workstation-neck.jpg
http://www.esrf.eu/computing/cs/tango/tango%5fdoc/kernel%5fdoc/pytango/latest/index.html
http://www.esrf.eu/computing/cs/tango/tango%5fdoc/kernel%5fdoc/pytango/latest/index.html
http://dx.doi.org/10.1109/ISBI.2008.4541250

Page 11 of 11Gouillart et al. Adv Struct Chem Imag (2016) 2:18

	18.	 Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image seg‑
mentation. Int J Comput Vis 59(2), 167–181 (2004)

	19.	 Fraunhofer Institute for Industrial Mathematics ITWM: MAVI. http://www.
itwm.fraunhofer.de/en/departments/image-processing/microstructure-
analysis/mavi.html (2016). Accessed Aug 2016

	20.	 Getreuer, P.: Rudin–Osher–Fatemi total variation denoising using split
Bregman. Image Process Line 2, 74–95 (2012)

	21.	 Gouillart, E., Toplis, M.J., Grynberg, J., Chopinet, M.-H., Sondergard, E.,
Salvo, L., Suéry, M., Di Michiel, M., Varoquaux, G.: In situ synchrotron
microtomography reveals multiple reaction pathways during soda-lime
glass synthesis. J Am Ceram Soc 95(5), 1504–1507 (2012)

	22.	 Grady, L.: Random walks for image segmentation. IEEE Trans Pattern Anal
Mach Intell 28(11), 1768–1783 (2006). doi:10.1109/TPAMI.2006.233

	23.	 Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: TomoPy: a framework for the
analysis of synchrotron tomographic data. J Synchrotron Radiat 21(5),
1188–1193 (2014)

	24.	 Hunter, J.D., et al.: Matplotlib: a 2D graphics environment. Comput Sci Eng
9(3), 90–95 (2007)

	25.	 Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int J
Comput Vis 1(4), 321–331 (1988)

	26.	 Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., et al.: Jupyter notebooks—a
publishing format for reproducible computational workflows. In: Position‑
ing and Power in Academic Publishing: Players, Agents and Agendas, p.
87 (2016). doi:10.3233/978-1-61499-649-1-87

	27.	 Knudsen, E.B., Sørensen, H.O., Wright, J.P., Goret, G., Kieffer, J.: Fabio: easy
access to two-dimensional x-ray detector images in python. J Appl
Crystallogr 46(2), 537–539 (2013)

	28.	 Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E., et al.: CellprofilerTM: free,
versatile software for automated biological image analysis. Biotechniques
42(1), 71 (2007)

	29.	 Maire, E., Withers, P.: Quantitative x-ray tomography. Int Mater Rev 59(1),
1–43 (2014)

	30.	 Malan, D.F., van der Walt, S.J., Raidou, R.G., van den Berg, B., Stoel, B.C.,
Botha, C.P., Nelissen, R.G., Valstar, E.R.: A fluoroscopy-based planning and
guidance software tool for minimally invasive hip refixation by cement
injection. Int J Comput Assist Radiol Surg 11(2), 281–296 (2016)

	31.	 Marone, F., Münch, B., Stampanoni, M.: Fast reconstruction algorithm
dealing with tomography artifacts. In: Proceedings of SPIE developments
in X-Ray tomography VII, vol. 7804. International Society for Optics and
Photonics, pp. 780410 (2010). doi:10.1117/12.859703

	32.	 Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., Kieffer, J.: The PyHST2 hybrid
distributed code for high speed tomographic reconstruction with itera‑
tive reconstruction and a priori knowledge capabilities. Nucl Instrum
Methods Phys Res Sect B Beam Interact Mater At 324, 41–48 (2014)

	33.	 Nunez-Iglesias, J., Beaumont, C., Robitaille, T.P.: Counting programming
language mentions in astronomy papers (Late 2016 version). doi:10.5281/
zenodo.163863. https://github.com/jni/programming-languages-in-
astronomy/blob/1.1/programming-languages-in-ADS.ipynb (2016).
Accessed Aug 2016

	34.	 Oliphant, T.E.: Python for scientific computing. Comput Sci Eng 9(3),
10–20 (2007)

	35.	 Pawlik, A., Segal, J., Sharp, H., Petre, M.: Crowdsourcing scientific software
documentation: a case study of the NumPy documentation project.
Comput Sci Eng 17(1), 28–36 (2015)

	36.	 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn:
machine learning in Python. J Mach Learn Res 12, 2825–2830 (2011)

	37.	 Pérez, F., Granger, B.E.: IPython: a system for interactive scientific comput‑
ing. Comput Sci Eng 9(3), 21–29 (2007)

	38.	 Perez, F., Granger, B.E., Hunter, J.D.: Python: an ecosystem for scientific
computing. Comput Sci Eng 13(2), 13–21 (2011)

	39.	 Prescher, C., Prakapenka, V.B.: DIOPTAS: a program for reduction of two-
dimensional x-ray diffraction data and data exploration. High Press Res
35(3), 223–230 (2015)

	40.	 Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer
vision with OpenCV. Commun ACM 55(6), 61–69 (2012)

	41.	 Rack, A., Scheel, M., Hardy, L., Curfs, C., Bonnin, A., Reichert, H.: Exploiting
coherence for real-time studies by single-bunch imaging. J Synchrotron
Radiat 21(4), 815–818 (2014)

	42.	 Ramachandran, P., Varoquaux, G.: Mayavi: 3d visualization of scientific
data. Comput Sci Eng 13(2), 40–51 (2011)

	43.	 Rocklin, M.: Dask contributors: dask. http://dask.pydata.org/en/latest/
(2016). Accessed Aug 2016

	44.	 Rossant, C.: Learning IPython for interactive computing and data visuali‑
zation. Packt Publishing Ltd, Birmingham (2015)

	45.	 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,
T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-
source platform for biological-image analysis. Nat Methods 9(7), 676–682
(2012)

	46.	 Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W.: The ImageJ ecosys‑
tem: an open platform for biomedical image analysis. Mol Reprod Dev
82(7–8), 518–529 (2015)

	47.	 Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D.: Image processing of
multiphase images obtained via x-ray microtomography: a review. Water
Resour Res 50(4), 3615–3639 (2014)

	48.	 Schneider, C.A., Rasband, W.S., Eliceiri, K.W., et al.: NIH Image and ImageJ:
25 years of image analysis. Nat Methods 9(7), 671–675 (2012)

	49.	 Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional
neural networks for lung nodule classification. In: International Confer‑
ence on Information Processing in Medical Imaging, pp. 588–599.
Springer (2015). doi:10.1007/978-3-319-19992-4_46

	50.	 Solé, V., Papillon, E., Cotte, M., Walter, P., Susini, J.: A multiplatform code for
the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim
Acta Part B At Spectrosc 62(1), 63–68 (2007)

	51.	 Sugandhi, R., Swamy, R., Khirwadkar, S.: Use of epics and python technol‑
ogy for the development of a computational toolkit for high heat flux
testing of plasma facing components. Fusion Eng Des 112, 783–787
(2016)

	52.	 V. Armando Sole: PyMca. https://github.com/vasole/pymca (2016).
Accessed Aug 2016

	53.	 Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure
for efficient numerical computation. Comput Sci Eng 13(2), 22–30 (2011)

	54.	 Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner,
J.D., Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python.
PeerJ 2, e453 (2014)

	55.	 Varoquaux, G., Gouillart, E., Vahtras, O., scipy-lecture-notes contributors:
Scipy lecture notes. http://www.scipy-lectures.org/ (2016). Accessed 10
Aug 2016

http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://www.itwm.fraunhofer.de/en/departments/image-processing/microstructure-analysis/mavi.html
http://dx.doi.org/10.1109/TPAMI.2006.233
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1117/12.859703
https://github.com/jni/programming-languages-in-astronomy/blob/1.1/programming-languages-in-ADS.ipynb
https://github.com/jni/programming-languages-in-astronomy/blob/1.1/programming-languages-in-ADS.ipynb
http://dask.pydata.org/en/latest/
http://dx.doi.org/10.1007/978-3-319-19992-4_46
https://github.com/vasole/pymca
http://www.scipy-lectures.org/

	Analyzing microtomography data with Python and the scikit-image library
	Abstract
	Background
	Overview and first steps
	The Python ecosystem
	Image processing capabilities

	Documentation
	Development and use of scikit-image
	Discussion—current limitations and challenges
	Getting started
	Conclusions
	Authors’ contributions
	References

