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Abstract 

In advanced tomographic experiments, large detector sizes and large numbers of acquired datasets can make it dif-
ficult to process the data in a reasonable time. At the same time, the acquired projections are often limited in some 
way, for example having a low number of projections or a low signal-to-noise ratio. Direct analytical reconstruction 
methods are able to produce reconstructions in very little time, even for large-scale data, but the quality of these 
reconstructions can be insufficient for further analysis in cases with limited data. Iterative reconstruction methods 
typically produce more accurate reconstructions, but take significantly more time to compute, which limits their 
usefulness in practice. In this paper, we present the application of the SIRT-FBP method to large-scale real-world 
tomographic data. The SIRT-FBP method is able to accurately approximate the simultaneous iterative reconstruction 
technique (SIRT) method by the computationally efficient filtered backprojection (FBP) method, using precomputed 
experiment-specific filters. We specifically focus on the many implementation details that are important for applica-
tion on large-scale real-world data, and give solutions to common problems that occur with experimental data. We 
show that SIRT-FBP filters can be computed in reasonable time, even for large problem sizes, and that precomputed 
filters can be reused for future experiments. Reconstruction results are given for three different experiments, and are 
compared with results of popular existing methods. The results show that the SIRT-FBP method is able to accurately 
approximate iterative reconstructions of experimental data. Furthermore, they show that, in practice, the SIRT-FBP 
method can produce more accurate reconstructions than standard direct analytical reconstructions with popular 
filters, without increasing the required computation time.
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Background
Advanced experimental facilities such as synchrotrons 
enable users to routinely perform large-scale tomog-
raphy experiments, in which large amounts of data are 
produced in short time. In a typical experiment at a syn-
chrotron facility, several thousand projection images, 
each with several thousand rows and columns of pixels, 
are acquired in the order of minutes. After acquisition, 
the data have to be processed to obtain results that are 
relevant to the specific research question. The entire 

processing pipeline usually consists of many different 
steps, from loading the data and pre-processing to post-
processing and final image analysis. To enable direct 
feedback and optimization of experimental parameters, 
it is important that the acquired projections can be pro-
cessed in a time comparable to data acquisition. This is 
especially important for experiments involving dynamic 
objects  [1] or in  situ experiments  [2]. One of the most 
important steps of the pipeline is the reconstruction of 
the projection data, in which the pre-processed projec-
tions are transformed to a three-dimensional recon-
structed image of the scanned object. Reconstruction 
usually has a large influence on the quality of the final 
results and is often the most time-consuming step of the 
entire pipeline. For large-scale tomographic data, the 
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reconstruction step has two competing goals: it has to 
produce high-quality reconstructed images, but it should 
be computationally efficient as well.

Tomographic reconstruction is an example of an 
inverse problem in which an unknown image is recon-
structed from its measured projections. In most applica-
tions of tomography, the inverse problem that has to be 
solved is ill-posed [3], which can make it difficult to find 
accurate reconstructions in practice. In ill-posed recon-
struction problems, the amount of acquired data is not 
sufficient to guarantee the existence of a unique solution, 
and there can be infinitely many solutions that fit with 
the data. Furthermore, solutions to ill-posed problems 
are typically very sensitive to small amounts of noise in 
the acquired data. Due to the large number of applica-
tions for tomography, however, there has been extensive 
research into the topic of computing accurate tomo-
graphic reconstructions  [3, 4], resulting in a wide range 
of different reconstruction methods.

The most popular reconstruction methods for large-
scale tomography data are direct methods (often called 
analytical methods as well), which include the fil-
tered backprojection (FBP) method  [4] and the gridrec 
method  [5]. Direct methods are typically computation-
ally efficient, which make them well-suited for process-
ing large-scale data. The approach is based on inverting a 
continuous model of the tomographic experiment, which 
assumes that an infinite number of noise-free projections 
are available. If the number of projections is sufficiently 
large, and the signal-to-noise ratio sufficiently high, 
reconstructions computed by direct methods are usu-
ally of high enough quality to make further analysis of the 
data possible. In many cases, however, it is not possible 
or not desirable to obtain a large number of projections 
with a high signal-to-noise ratio. In experiments involv-
ing dynamically changing objects, for example, the rate of 
acquisition has to match the rate of change in the sam-
ple [6]. Another example is experiments involving dose-
sensitive objects, such as biological samples, in which 
the total amount of deposited X-ray dose can limit the 
number of projections that can be acquired  [7]. Finally, 
parts of the experimental setup can block the beam [8], 
which limits the angular range for which projections can 
be acquired. In these cases, reconstructions computed by 
direct methods often contain significant artifacts, making 
further analysis difficult or impossible.

For tomographic reconstruction problems with lim-
ited data, iterative reconstruction methods are often 
able to produce reconstructions with higher quality 
than direct methods [9]. Iterative reconstruction meth-
ods are based on modeling the experiment as a linear 
system of equations, which is solved by an iterative opti-
mization method. The model only assumes that data are 

available for the projections that are actually acquired, 
which can improve reconstruction quality for problems 
with a limited number of projections compared with 
direct methods. Furthermore, the problem of noise 
in linear systems has been studied extensively in the 
past, and several approaches are available to minimize 
the effect of low signal-to-noise ratios on the recon-
structed image. Recently, much research has focused 
on regularized iterative reconstruction, in which addi-
tional regularizing terms are added to the error function 
that is minimized, exploiting prior knowledge about 
the scanned object to obtain accurate reconstructions 
from highly limited data. For example, if it is possible 
to represent the scanned object sparsely in a certain 
basis, compressed sensing algorithms can often be used 
to obtain accurate reconstructions  [10]. An example of 
this approach is Total Variation minimization, which 
can be used to accurately reconstruct objects that have 
a sparse gradient in a wide variety of applications  [11, 
12]. A different approach is taken in discrete tomogra-
phy, in which objects that consist of a limited number 
of materials can be accurately reconstructed by exploit-
ing prior knowledge about the expected materials  [13]. 
An important disadvantage of iterative reconstruction 
methods is their computational costs, which are typi-
cally significantly higher than those of direct methods. 
Regularized iterative methods usually require even 
higher computational costs, since they are based on 
extending standard iterative methods. For large-scale 
tomographic data, it is often the case that iterative 
methods are so time-consuming that they are unus-
able in practice, which is one of the reasons that direct 
methods remain popular [14].

In the past, much research has been focused on reduc-
ing the computation time required for iterative recon-
struction methods. For example, tomographic operations 
are well suited for graphic processing units (GPUs) [15], 
enabling significant time reduction by exploiting them 
in iterative methods  [16, 17]. Even when using GPUs, 
however, it takes hours to compute full three-dimen-
sional iterative reconstructions for typical data sizes in 
modern large-scale tomographic experiments  [18]. A 
different approach is to use massively parallelized meth-
ods on large supercomputers to improve computation 
time. Using 32K supercomputer nodes, for example, the 
computation time for a full iterative reconstruction can 
be reduced to minutes  [19]. Supercomputing facilities, 
however, are expensive to build and maintain, not always 
available to every user, and usually have to be shared with 
others. Computing time might not be readily available 
at all times, especially during an experiment, when it is 
important that the acquired data can be reconstructed 
immediately.
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A different approach has been proposed in recent 
works: instead of speeding up iterative methods, this 
approach modifies existing direct algorithms to improve 
the quality of the reconstructions they compute. Often, 
the modifications are based on changing the filtering 
step that is common in direct methods. In [20] for exam-
ple, filters are computed by solving linear systems that 
are similar to the ones solved in iterative reconstruction 
methods. Reconstructions computed by the resulting 
method are very similar to reconstructions computed 
by iterative methods, but still require significantly more 
computation time compared with direct methods. 
In  [21], a filter is proposed that is based on the popular 
iterative simultaneous iterative reconstruction technique 
(SIRT) method, which is extended with ray-by-ray noise 
weighting in  [22]. During derivation of the filters, how-
ever, it is assumed that enough projections are available 
such that a certain approximation is accurate, and that 
projections are available for the full 180◦ range. Another 
example is the method proposed in  [23], where filters 
are computed that accurately approximate the itera-
tive SIRT method. During computation of these filters, 
a large number of iterative SIRT reconstructions have to 
be computed, which can take a prohibitively long time for 
problem sizes that are common in practice.

In this paper, we focus on the recently proposed SIRT-
FBP method  [24]. The SIRT-FBP method improves 
on existing filter-based methods in several important 
aspects. Reconstructions of the SIRT-FBP method are 
identical to existing direct methods except for the filter-
ing step, resulting in computationally efficient recon-
struction and enabling the use of existing highly efficient 
implementations. Furthermore, no assumptions on the 
availability of projections are made during derivation of 
the filter, making it applicable to problems with a limited 
number of projections and/or a limited angular range. 
Finally, computing a SIRT-FBP filter requires a computa-
tion time that is similar to a single iterative SIRT recon-
struction, and filters can be precomputed and reused on 
problems with identical experimental setups.

In general, most literature about filter-based recon-
struction methods, including  [24], use small-scale 
simulated tomography problems to investigate the per-
formance of their methods. Many problems can occur 
when applying mathematical algorithms to real-world 
data, however, which typically require modifications 
of the algorithms to solve. In this paper, we present the 
application of the SIRT-FBP method to large-scale real-
world tomography experiments. We will focus specifi-
cally on the implementation details that are important 
for real-world application of the method. We begin by 
explaining the problem of tomographic reconstruction 
and popular reconstruction methods in the  “Notation 

and concepts” section. In the  “Methods” section, we 
give a brief explanation of the SIRT-FBP method. A 
more in-depth explanation of the implementation 
details that are important when applying SIRT-FBP to 
large-scale real-world data is given in the  “Implemen-
tation details” section. In the  “Results and discussion” 
section, three examples of applications of the SIRT-FBP 
method in practice are given, comparing reconstruc-
tion results of SIRT-FBP with several popular methods. 
Finally, we conclude the paper in the  “Conclusions” 
section with some final remarks.

Notation and concepts
Problem definition
In this paper, we will focus on three-dimensional paral-
lel-beam tomographic reconstruction problems. Since 
each slice of the three-dimensional object can be recon-
structed independently from the other slices, we can 
model the problem as a collection of two-dimensional 
problems. Specifically, we model the unknown object as a 
two-dimensional function f : R2 → R, with the measure-
ments P: R2 → R defined as

where δ is the Dirac delta function. In other words, each 
measurement P(t, θ) is defined as the line integral of 
f(x,  y) over the line defined by t = x cos θ + y sin θ. The 
problem of tomographic reconstruction is to find the 
unknown image f, given its projections P.

In practice, only a finite number of measurements can 
be acquired. If measurements are acquired for Nθ angles 
and Nd measurements per angle, the acquired projections 
are typically written as a vector p ∈ R

NθNd. Similarly, the 
unknown object is reconstructed on a N × N  pixel grid, 
with the reconstructed values written as a vector x ∈ R

N 2 . 
Using these definitions, we can define the tomographic 
experiment as the following linear system:

Here, W ∈ R
NθNd×N 2 is called the system matrix, with ele-

ment wij equal to the contribution of pixel j to the meas-
urement i. Since the system matrix can be extremely large 
for typical problem sizes in practice, the matrix is usually 
not computed explicitly. Instead, each multiplication of a 
vector with W or WT is computed on-the-fly [17]. In this 
context, multiplication with W is called forward projec-
tion, and multiplication with WT is called backprojection.

Several algorithms have been proposed to solve tomo-
graphic reconstruction problems. In practice, two differ-
ent approaches are commonly used: direct methods and 
iterative methods.

(1)

P(t, θ) =

∫ ∞

−∞

∫ ∞

−∞

f (x, y)δ(x cos θ + y sin θ − t)dxdy,

(2)Wx = p.
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Direct methods
Direct methods are based on taking the continuous 
model of tomographic experiments [Eq. (1)] and finding 
an inversion equation for it. This continuous inversion 
equation is discretized afterwards, resulting in an algo-
rithm for discrete projection data. For two-dimensional 
parallel-beam problems, the direct approach results in 
the popular FBP method. The FBP method consists of 
a filtering step, where the acquired projections are con-
volved with a filter, and a backprojection step afterwards:

Here, Ch is the convolution operator that convolves the 
measurements of each projection angle with the corre-
sponding filter in h ∈ R

NθNf . Note that the data of each 
projection angle are filtered independently from the data 
of other projection angles. Therefore, the chosen filter 
can be different for each projection angle, which we will 
call angle-dependent filtering in this paper. Typically, 
however, a single filter h′ ∈ R

Nf  is used for every pro-
jection angle. For example, a popular filter is the Ram-
Lak filter, which is defined as Fh′ = |ω|, where F is the 
Fourier transform operator and ω the Fourier frequency. 
Several other filters are used in practice [25], such as the 
Shepp–Logan, Hann, and Parzen filters. Most filters are 
modifications of the Ram-Lak filter, aiming to improve 
reconstruction results for problems with low signal-to-
noise ratios and/or limited numbers of projections.

In parallel-beam geometries, FBP reconstructions can 
also be computed by first backprojecting the acquired 
data, and performing a two-dimensional filtering opera-
tion afterwards:

Here, C′
g is a two-dimensional convolution operator 

with filter g ∈ R
Nf ×Nf . If Wg = h, both Eqs.  (3) and (4) 

will produce similar reconstruction results. We will use 
this equivalence during the derivation of the SIRT-FBP 
method in the “Methods” section.

Iterative methods
Iterative reconstruction methods are based on a discrete 
model of the tomographic experiment, which can be 
written as a linear system [Eq. (2)]. Specifically, iterative 
methods compute reconstructions by solving the linear 
system iteratively, reducing the projection error in some 
vector norm in each iteration. In the case of the ℓ2-norm, 
i.e., �y�22 =

∑n−1
i=0 y2i  for y ∈ R

n, iterative methods com-
pute the following reconstructions:

(3)FBP(p,h) = WTChp.

(4)FBP′(p, g) = C′
gW

Tp.

(5)xiter = argmin
x

�p−Wx�22.

By using different iterative optimization algorithms, dif-
ferent iterative reconstruction methods can be defined.

A popular iterative method is the SIRT method  [4], 
which can be viewed as an application of Landweber 
iteration [26] to the linear system of tomography. Starting 
with an initial image x0, SIRT reconstructions are com-
puted by the following iterations:

Here, α is a relaxation factor that influences the conver-
gence rate and should satisfy 0 < α < 2

σ 2, with σ equal to 
the largest singular value of W. Various ways of choos-
ing a suitable relaxation factor are available, for example 
by comparing SIRT with other methods [27] or adjusting 
the factor at each iteration [28]. In the rest of this paper, 
we use α = (NθNd)

−1, which is related to Cimmino’s 
method [29] and a reasonable choice for most problems.

As explained in the “Background” section, the continu-
ous inversion equations that are the basis of direct meth-
ods assume that projection data are available for an infinite 
number of noise-free measurements, which is infeasible in 
practice. For problems with a limited number of projec-
tions and/or a low signal-to-noise ratio, the reconstruc-
tion quality of direct methods is often insufficiently high 
to make further analysis possible. In these cases, itera-
tive methods tend to produce reconstructions with less 
artifacts than direct methods. One reason for this is that 
iterative methods are based on a model that only uses 
projections that were actually acquired. Furthermore, by 
choosing a certain number of iterations or using additional 
regularization, the effect of noise in iterative methods can 
be minimized. A major disadvantage of iterative methods 
is their computational cost: typically, several hundreds of 
forward projections and backprojections have to be com-
puted for a single reconstruction, compared with a single 
backprojection for filtered backprojection.

Methods
In this section, we will introduce the SIRT-FBP method 
by briefly explaining the derivation of the method as pub-
lished in [24].

The SIRT-FBP method approximates the iterative SIRT 
method by standard FBP with a specific filter. Here, we 
give a short introduction to the method; for a more in-
depth mathematical derivation, we refer to  [24]. We 
begin by analyzing the standard equation of the SIRT 
method  [4] in its Landweber iteration form [Eq.  (6)]. 
We can rewrite Eq. (6) to a matrix form by grouping 
the terms related to x and p, resulting in the following 
equation:

(6)xi+1 = xi + αWT
(

p−Wxi
)

.

(7)xi+1 =

(

I− αWTW
)

xi + αWTp
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Note that Eq.  (7) is a recurrence relation of the form 
zi+1 = Azi + b, for which we can find a direct equation 
for the result of n iterations:

By defining A = I− αWTW and substituting b = αWTp 
and zi = xi, we can find a direct equation for the recon-
struction result of n iterations of SIRT:

In many cases, the initial image x0 is taken to be the zero 
image, in which case we can ignore the first term of Eq. 
(9), resulting in

A comparison of Eq.  (10) to the backproject-then-filter 
form of FBP [Eq.  (4)] suggests that we can approximate 
Eq. (10) by FBP with a certain filter qn:

The question remains how to choose qn, such that 
Cqn ≈

∑n−1
k=0 A

k. It turns out that a good approximating 
filter can be computed by taking the impulse response of 
∑n−1

k=0 A
k:

where ec ∈ R
Nd is a vector with the central element equal 

to 1, and the other elements equal to 0. In other words, 
we can compute a filter by starting with an image with 
the central pixel set to 1 and the other pixels set to 0, and 
iteratively apply A = I− αWTW to it, summing each 
resulting image. The result is an image qn which can be 
interpreted as a 2D convolution filter.

Since, for parallel-beam geometries, backprojecting a 
sinogram and filtering afterwards is identical to filtering 
a sinogram and backprojecting the result, we can com-
pute filters for standard filter-then-backproject FBP by 
forward projecting qn:

By using un as an angle-dependent filter in the FBP 
method, an approximation to the SIRT method is 
obtained:

(8)zn = Az0 +

[

n−1
∑

k=0

Ak

]

b

(9)xn = Ax0 + α

[

n−1
∑

k=0

Ak

]

WTp.

(10)xn = α

[

n−1
∑

k=0

Ak

]

WTp.

(11)xn ≈ αCqnW
Tp.

(12)qn =

n−1
∑

k=0

Akec,

(13)un = αWqn.

(14)xn ≈ FBP(p,un) = WTCunp.

For more information about the mathematical derivation 
of the SIRT-FBP method and for a comparison between 
reconstruction result of standard FBP, SIRT, and SIRT-
FBP for simulated phantom data, we refer to [24]. In the 
rest of this paper, we will focus on applying the SIRT-FBP 
method to large-scale real-world tomographic data.

Implementation details
As with many tomographic reconstruction algorithms, 
several practical issues arise when applying the SIRT-FBP 
method on real-world tomographic data. In this section, 
we discuss implementation details that are important for 
real-world application of SIRT-FBP. To demonstrate the 
impact of some of these details, we give reconstruction 
results for simulated data in the “Results and discussion” 
section.

Shift‑invariance of the system matrix
The quality of the approximation in Eq. (14) depends on 
how well the 

∑n−1
k=0 A

k operator is approximated by the 
convolution operation Cqn. Note that the convolution 
operation is shift-invariant, while the 

∑n−1
k=0 A

k opera-
tion, on the other hand, is not. Therefore, the quality of 
the approximation depends on how close to shift-invar-
iant the summed matrix operation is. Recall that A is 
defined as A = I− αWTW. By definition, the identity 
operator I is shift-invariant, so the question remains how 
close to shift-invariant the combined WTW operation is.

Different ways of implementing the system matrix W 
are used in practice, each using a different discretization 
of the modeled tomography experiment. Depending on 
the computational hardware that is used (e.g., GPUs or 
CPUs), some implementations can be significantly more 
computationally efficient compared with others  [17]. In 
most cases, reconstruction results are not significantly 
impacted by the specific choice of system matrix imple-
mentation  [30]. It turns out, however, that how close 
WTW is to being shift-invariant is significantly impacted 
by the choice of discretization.

Often, a single ray of the tomographic experiment is 
modeled as a line, with the element wij of W equal to the 
intersection of pixel j with the line corresponding to ray i. 
Using this definition, the WTW operation is not approxi-
mated well by a shift-invariant convolution operation. 
The approximation can be improved by using supersam-
pling, i.e., using multiple lines per ray, and combining 
the results afterwards. A more accurate approximation 
can be obtained, however, by modeling a single ray by 
a strip with the same width as a detector pixel, and wij 
equal to the overlap of strip i and pixel j. By using multi-
ple strips per ray, it is possible to use supersampling with 
the strip model as well. Reconstruction results for several 
choices of discretization are shown in the  “Results and 
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discussion” section. Note that the specific choice of dis-
cretization is only important during the computation of 
the filter. When performing the final reconstruction with 
Eq.  (14), all discretizations that work well for standard 
FBP can be used effectively.

Even numbers of pixels
Computing the filter qn using Eq. (12) requires setting the 
central pixel of image ec to one. This presents a problem 
when the number of rows or columns of ec is even, since 
there is no clear central pixel when there is an even num-
ber of pixels. A simple solution is to increase or decrease 
the number of rows or columns by one in these cases. 
The number of pixels in modern tomographic experi-
ments is typically relatively large (e.g., several thousands), 
which makes the error made by this approximation rela-
tively small.

Number of iterations
The SIRT-FBP method has a single parameter that influ-
ences the reconstruction results: the number of itera-
tions of SIRT that are approximated. A larger number of 
approximated iterations will increase the required com-
putation time for computing the SIRT-FBP filter, but does 
not influence the required computation time for recon-
struction. The properties of the reconstructed image, 
however, do depend on the chosen number of iterations. 
In the iterative SIRT method, choosing a certain number 
of iterations can be viewed as a type of regularization: in 
general, using few iterations will result in images with less 
noise, but less high-frequency details as well, while using 
many iterations results in images with more details but 
more noise as well. Since the SIRT-FBP method approxi-
mates the SIRT method, the effect of the number of itera-
tions on the reconstructed image is similar. The optimal 
choice of this parameter depends on the geometry of 
the tomography experiment, the type of objects that 
were scanned, and the type of analysis that is performed 
after reconstruction. Reconstruction results of the SIRT 
and SIRT-FBP method are typically not very sensitive to 
the specific chosen number of iterations, however, and 
reasonable choices typically give satisfactory results in 
practice. In some cases, it is also possible to choose the 
parameter based on a stopping criterion [31].

Low‑frequency artifacts
Empirically, we find that most artifacts resulting from 
approximating SIRT by SIRT-FBP occur in the low fre-
quencies of the reconstructed image. Note that a simi-
lar effect is found when discretizing the Ram-Lak filter 
of standard FBP [4, Fig. 3.13]. Typically, the artifacts are 
small enough to be invisible to a human observer. They 
can be further reduced if needed, however, by removing 

low-frequency signals from the acquired data and adding 
them back in the image after reconstruction. Here, we use 
a simple approach that we empirically found to work well 
for the SIRT-FBP method: we subtract from the acquired 
data the simulated projections of a uniform disk, which is 
as large as the field-of-view and centered on the rotation 
axis. The uniform gray value of the disk is chosen such 
that the zero-frequency component of each projection 
is minimized after the subtraction. After reconstruction, 
the disk can be added back to the reconstructed image. 
Specifically, let pC ∈ R

NdNθ be the simulated projections 
of the disk with a gray value of one, let p ∈ R

Nθ be the 
zero-frequency component of the acquired data along 
each projection angle, and let pC ∈ R

Nθ be defined simi-
larly. Then, the chosen gray value of the subtracted disk is 
defined as

By performing this additional preprocessing step, the 
effect of the low-frequency artifacts can be minimized, as 
shown in the “Results and discussion” section.

Filtering after backprojecting
Reconstructions of the SIRT-FBP method can be com-
puted in two ways: convolving the projection data first 
and backprojecting afterwards [Eq. (14)], or backproject-
ing the projection data first and filtering afterwards [Eq. 
(11)]. In general, both approaches will produce similar 
reconstruction results, but the backproject-then-filter 
(BTF) approach has several disadvantages compared to 
the filter-then-backproject (FTB) approach. For example, 
the BTF approach requires a two-dimensional convolu-
tion with image qn, while the FTB approach uses multiple 
one-dimensional convolutions, which is computation-
ally more efficient. More importantly, the BTF approach 
requires that the backprojection is performed on a grid 
that is significantly larger than qn, since severe edge 
effects will occur otherwise in the reconstructed image. 
Similar to standard FBP, the FTB approach does not 
require backprojecting on a large grid, making it signifi-
cantly more efficient computationally compared with the 
BTF approach. A comparison of reconstruction results of 
the BTF and FTB approaches is given in the “Results and 
discussion” section.

Using gridrec instead of FBP
In practice, the gridrec method [5] is often used to recon-
struct large-scale tomographic datasets efficiently. The 
gridrec method can be viewed as an approximation to 
the standard FBP method, making it more suitable for 
efficient computation using standard CPUs. Importantly, 
the gridrec method includes a filtering operation that 

(15)aC = argmin
a

�p− apC�2.
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is identical to the filtering operation in standard FBP. 
Therefore, it is possible to use the filters computed by the 
SIRT-FBP method in gridrec as well, which enables very 
efficient computation of SIRT-FBP reconstructions on 
both workstations  [32] and large-scale supercomputers. 
Results of the “Results and discussion” section show that 
SIRT-FBP reconstructions computed with gridrec are 
visually similar to standard SIRT-FBP reconstructions.

Filter computation time
The most time-consuming part of computing a SIRT-
FBP filter is performing the iterations of Eq. (12). In each 
iteration, a single forward projection and a single back-
projection operation are needed, similar to the standard 
iterative SIRT method. The total required time for com-
puting a single filter is therefore similar to the time it 
takes to compute a SIRT reconstruction for a single slice. 
Note, however, that the filter can be precomputed for a 
specific acquisition geometry (i.e., number of projections 
and detector column pixels, and size of the reconstruc-
tion grid). The precomputed filter can be stored and 
used for future SIRT-FBP reconstructions using the same 
acquisition geometry. Furthermore, filters for multiple 
numbers of iterations can be computed in a single run 
by storing the filter at each chosen number of iterations. 
Finally, a full three-dimensional tomographic reconstruc-
tion using SIRT-FBP can be computed slice-by-slice, with 
each slice using the same filter.

Truncated data
In some tomographic experiments, the scanned object 
is larger than the field-of-view (FOV) of the scanning 
hardware. In these cases, the projection data are trun-
cated at the edge of the detector. This truncation can lead 
to severe artifacts in the reconstructed images. When 
reconstructing the data using FBP or gridrec, truncation 
artifacts can be reduced by padding the data to a larger 
virtual detector  [33]. Typically, the measured values at 
the edges of the detector are used as virtual measure-
ments in the padded regions, ensuring that there is no 
large jump in the values at the detector edges. Note that 
it is not possible to apply this approach to iterative meth-
ods like SIRT. Instead, a common approach for iterative 
methods is to use a reconstruction grid that is larger than 
the FOV, which can increase the required computation 
time significantly. In the SIRT-FBP method, on the other 
hand, it is possible to use the padding approach, since it 
can be viewed as standard FBP with special filters. There-
fore, it is possible to compute approximated iterative 
reconstructions of truncated data very efficiently using 
the SIRT-FBP method. Note that in these cases, the com-
putation of the SIRT-FBP filter has to be performed on a 

grid that is larger than the FOV, but the reconstruction 
itself only uses a backprojection as large as the FOV.

Results and discussion
In this section, we will discuss results of applying the 
SIRT-FBP method on large-scale tomographic data, and 
the implications on large-scale tomographic reconstruc-
tion in practice. First, we will discuss the impact of the 
various implementation details that were discussed in 
the  “Implementation details” section. Afterwards, we 
show three examples of applying the SIRT-FBP method 
on large-scale real-world tomographic data. The com-
puter code that computes SIRT-FBP filters was imple-
mented using the ASTRA toolbox [34], and will be made 
available under an open-source license. Note that, after 
filter computation, existing efficient implementations 
of the FBP method and gridrec method can be used to 
compute SIRT-FBP reconstructions. In all reconstruc-
tion results presented in this paper, the number of rows 
and columns of the reconstruction grid is identical to the 
number of detector column pixels.

Implementation details
To demonstrate the impact of some of the implementa-
tion details that were discussed in the  “Implementation 
details” section, we will use reconstructions of simulated 
projections of the Shepp–Logan head phantom (Fig.  1). 
In most cases, we use 256 projections with 1024 detector 
pixels per projection, and reconstruct on a 1024 × 1024 
reconstruction grid.   

A comparison of reconstruction results using different 
system matrix discretizations is given in Fig.  2, show-
ing that artifacts occur when the system matrix discre-
tization is not approximately shift-invariant. In Fig.  3, a 
comparison is made between reconstruction results of 
the SIRT-FBP method both with and without the low-
frequency adjustment. The results show that the low-
frequency adjustment is able to minimize the minor 
low-frequency artifacts that occur with standard SIRT-
FBP. Since the effect of the low-frequency artifacts is typ-
ically small, we did not apply the adjustment in the other 
examples of this paper. In Fig.  4, a comparison is made 
between reconstructions with the backproject-then-fil-
ter (BTF) and filter-then-backproject (FTB) approaches, 
both with and without backprojecting on a larger grid. 
The results show that the reconstructed image contains 
severe artifacts when using the BTF approach without 
a large grid, while reconstructions of the BTF approach 
with a large grid and the FTB approach without a large 
grid are visually similar. In Fig. 5, a comparison is made 
between reconstructions computed with SIRT-FBP using 
FBP, SIRT-FBP using gridrec, and standard gridrec. Note 
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that both SIRT-FBP reconstructions are visually similar, 
showing that it is possible to accurately approximate the 
SIRT-FBP method with gridrec. Finally, a comparison of 
reconstruction results for truncated data with various 
reconstruction methods is shown in Fig. 6.

Measured times for both computing SIRT-FBP filters 
and reconstructing with SIRT-FBP are shown in Fig.  7, 
including a comparison with the reconstruction time of 
standard SIRT. All computations were performed on a 
workstation with 16 CPU cores (Intel Xeon E5-2630) 
and a single NVidia Tesla K80 GPU. Note that even for 
large detector sizes, computing the SIRT-FBP filter takes 
<10 min. Furthermore, the results of Fig. 7b show that it 
takes significantly less time to reconstruct images using 
the SIRT-FBP method compared with the iterative SIRT 
method. This reduction in reconstruction time can have 
significant impact in practice: on this workstation, for 

example, reconstructing a full 2048× 2048× 2048 vol-
ume from 512 projections would take more than 3  h 
using SIRT with one GPU, whereas reconstructing the 
same data with the SIRT-FBP method would take roughly 
146  s using FBP with one GPU, and roughly 25  s using 
gridrec. Note that the required computation time of FBP 
and iterative methods generally scales linearly with the 
number of acquired projections. In the gridrec method, 
on the other hand, the number of projections has a rela-
tively small influence on the computation time, since the 
most time-consuming operations of gridrec are its 2D 
Fourier transforms, which do not depend on the number 
of acquired projections.

Experimental data
In this section, we show reconstruction results of the 
SIRT-FBP method for three examples of large-scale 

Fig. 1  a Shepp–Logan head phantom and b its projections for θ ∈ [0,π)

Fig. 2  Reconstructions of the Shepp–Logan head phantom with the SIRT-FBP method, using different discretizations of the system matrix during 
filter computation. In a the Joseph kernel is used, in b rays are modeled by a line, and in c rays are modeled by a strip with the same width as a 
detector pixel
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Fig. 3  Line profile of SIRT-FBP reconstructions of the Shepp–Logan head phantom, with and without low-frequency artifact adjustment. Values are 
shown for the vertical line in the horizontal center of the reconstruction grid, which is indicated by the dashed line in the right image

Fig. 4  SIRT-FBP reconstructions of the Shepp–Logan head phantom using a, b the BTF approach and c the FTB approach. In a and c the backpro-
jection operation is performed using a grid as large as the field-of-view, while in b a grid that is four times larger than the field-of-view is used

Fig. 5  Reconstructions of the Shepp–Logan head phantom from noisy projection data, using a standard gridrec with the Shepp–Logan filter, b 
gridrec with the SIRT-FBP filter, and c FBP with the SIRT-FBP filter
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real-world tomographic data. The results are compared 
with standard gridrec reconstructions using various 
popular filters and with the iterative SIRT method. The 
data were acquired with a transmission X-ray microscope 
(TXM) setup at the 32-ID beamline of Argonne National 
Laboratory’s Advanced Photon Source [35]. After acqui-
sition, the projections were processed with TomoPy [32] 
and reconstructed with either TomoPy (all gridrec recon-
structions) or the ASTRA toolbox [34] (all SIRT-FBP and 
SIRT reconstructions), using the recent integration of 
both toolboxes [18].

Diamond anvil cell
The first dataset is an example of a common in situ setup 
in which a sample was put under increasing pressures in 

a diamond anvil cell. The frame of the anvil cell blocks 
the incoming beam for many projection angles, making 
it impossible to acquire projections for the entire 180◦ 
range. These limited-angle problems are common in 
electron tomography [36] and make it difficult to obtain 
accurate reconstructions, especially using direct recon-
struction methods  [37]. In the dataset we discuss here, 
projections of 2160× 2560 pixels were acquired in 0.5◦ 
intervals over a 137◦ range, resulting in 273 projections.

In Fig.  8, reconstruction results are shown of a sin-
gle slice using the gridrec method, the iterative SIRT 
method, and the SIRT-FBP method. Note that the gridrec 
reconstruction contains significantly more noise com-
pared with the other reconstructions. Furthermore, the 
results show that the SIRT-FBP reconstruction is visually 

Fig. 6  Reconstructions of the Shepp–Logan head phantom from noisy projection data truncated to the central 256 pixels, using a standard FBP 
without padding, b standard FBP with padding, and c SIRT-FBP with padding

Fig. 7  Computation times for 512 projections and various numbers of detector pixels. In each case, the number of rows and columns in the 
reconstruction grid is identical to the number of detector pixels per projection. In a, the required time for computing SIRT-FBP filters is shown for 
100 iterations using 16 CPU cores, and in b reconstruction times are shown for 100 iterations of SIRT, and the SIRT-FBP method using both FBP and 
gridrec. The FBP reconstructions are computed using a single GPU, and the gridrec reconstructions are computed using 16 CPU cores
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very similar to the iterative SIRT reconstruction. How-
ever, computing a single slice of the SIRT-FBP recon-
struction takes 75  ms using a NVidia Tesla K80 GPU, 
while computing a single slice of the SIRT reconstruction 
takes 4.9 s using the same GPU.

A common approach for reducing noise artifacts in 
direct reconstructions is to either change the convolu-
tion filter, or to apply additional filtering to the image 
after reconstruction. Note that additional filtering usu-
ally requires choosing parameters that have a large 
influence on the final image quality, and can increase 
the required processing time for large-scale data signifi-
cantly. In Fig.  9, the SIRT-FBP reconstruction is com-
pared with reconstructions computed using gridrec with 
the Shepp–Logan filter and additional Gaussian filtering, 
and using gridrec with the Parzen filter, which is often 
used in problems with low signal-to-noise ratios. The 
results show that although both approaches are able to 
reduce noise artifacts compared with standard gridrec 
using the Shepp–Logan filter (Fig.  8a), the SIRT-FBP 
reconstruction contains less artifacts. Furthermore, the 
reconstructions using additional filtering and the Parzen 
filter contain significantly more limited-angle artifacts 
compared with the SIRT-FBP reconstruction. A possible 
reason for this is the fact that the SIRT-FBP filter is com-
puted specifically for the limited-angle geometry of the 
actual experiment, while the standard filters and addi-
tional filtering steps do not take the limited-angle geom-
etry into account.

Mouse cortex
The second scanned object consists of large bundle of 
myelinated axons in the cortex of a mouse. Samples were 

prepared for routine electron microscopy (i.e., fixed 
with aldehydes, stained with osmium, dehydrated, and 
embedded in plastic). Data were acquired for 1501 pro-
jections over 180◦ using a detector with 2048× 2448 
pixels, binned to 1124 detector pixels. In Fig. 10, recon-
structions of a single slice are shown for the SIRT-FBP 
method and gridrec using the Shepp–Logan filter and the 
Parzen filter. Note that the gridrec reconstruction using 
the Shepp–Logan filter contains significantly more noise 
artifacts compared with the other two reconstructions. 
Specifically, the myelin rings of the axons are clearly visi-
ble in the reconstructions using SIRT-FBP and the Parzen 
filter, but not in the reconstruction using the Shepp–
Logan filter, due to severe noise artifacts. The recon-
structions of the SIRT-FBP method and gridrec using 
the Parzen filter are visually similar, with the SIRT-FBP 
reconstruction containing slightly less noise artifacts, but 
having a slightly lower resolution as well. If required for 
the analysis, however, it is possible to increase the num-
ber of approximated iterations in the SIRT-FBP method 
to increase the resolution of the reconstruction.

Li–O2 battery cathode
The third scanned object is a Li–O2 battery cathode con-
sisting of Timcal superP carbon (+10 wt% PVdF-HFP), in 
which Li–O2 particles have been formed during electro-
chemical discharge. For this new generation of battery, 
obtaining accurate three-dimensional information about 
the material morphology is crucial to get a better under-
standing of the formation mechanism and behavior of the 
Li–O2 depositions. The sample was principally made of 
carbon features which have very weak absorption at 8 keV, 
i.e., in the hard X-ray regime. Therefore, it was analyzed 

Fig. 8  Reconstructions of a diamond anvil cell experiment with missing projections, using: a the standard gridrec reconstruction with the Shepp–
Logan filter, b the standard iterative SIRT method with 100 iterations, and c the proposed SIRT-FBP method with 100 approximated iterations
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with the Zernike phase contrast approach involving a 
phase ring that shifts the phase of the direct beam by π/2 
to transform the phase shift generated by the sample into 
a detectable amplitude signal, enhancing contrasts.

In Fig.  11, reconstructions are shown of a single slice 
of the cathode, reconstructed from 375 projections over 
180◦ with 1124 detector column pixels, using the SIRT-
FBP method and gridrec with the Shepp–Logan filter 
and the Parzen filter. The results show that the SIRT-FBP 
reconstruction contains significantly less noise artifacts 
than the gridrec reconstructions, especially the recon-
struction using the Shepp–Logan filter. Specifically, the 
morphology of the cathode is most clearly visible in the 
SIRT-FBP reconstruction, enabling more accurate analy-
sis compared with the other reconstructions.

Conclusions
In this paper, we have shown the application of the com-
putationally efficient SIRT-FBP method to large-scale 
real-world tomographic data. The SIRT-FBP method 
approximates the iterative SIRT method by FBP with 
computed angle-dependent filters. Reconstructions com-
puted by the SIRT-FBP method are visually very similar 
to reconstructions computed by the SIRT method, but 
the required computation time for SIRT-FBP is identi-
cal to that of standard FBP and gridrec. SIRT-FBP filters 
can be precomputed for a certain experimental setup by 
an iterative algorithm similar to the SIRT method, and 
experiments using an identical setup can use the same 
filter without recomputation. The required computa-
tion time for computing a single filter is similar to the 

Fig. 9  Reconstructions of a diamond anvil cell experiment with missing projections, using: a the proposed SIRT-FBP method with 100 approxi-
mated iterations, b standard gridrec with the Shepp–Logan filter and additional gaussian filtering afterwards, and c standard gridrec with the Parzen 
filter

Fig. 10  Reconstructions of a mouse cortex, using: a the proposed SIRT-FBP method with 100 approximated iterations, b standard gridrec with the 
Shepp–Logan filter, and c standard gridrec with the Parzen filter
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computation time of a SIRT reconstruction for a single 
slice.

We have specifically focused on discussing important 
implementation details related to problems that occur 
when applying a mathematical algorithm to real-world 
data. For example, we explained how to minimize recon-
struction artifacts by using shift-invariant discretizations 
of the system matrix, and how to compute filters and 
reconstructions for large-scale data in a computationally 
efficient way. Furthermore, we discussed the influence of 
the algorithm parameters on reconstruction quality and 
computation time. Reconstruction results of the SIRT-
FBP method were shown for three different real-world 
experimental datasets acquired at the 32-ID beamline of 
the Advanced Photon Source. The reconstructed images 
were compared with those of various popular reconstruc-
tion methods, showing that the SIRT-FBP method can 
improve reconstruction results for large-scale real-world 
data without increasing the required computation time.
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