
Moeglein et al. Adv Struct Chem Imag  (2017) 3:2 
DOI 10.1186/s40679-016-0034-x

METHODOLOGY

Applying shot boundary detection 
for automated crystal growth analysis 
during in situ transmission electron microscope 
experiments
W. A. Moeglein1, R. Griswold1, B. L. Mehdi2,3, N. D. Browning2,3,5 and J. Teuton4* 

Abstract 

In situ scanning transmission electron microscopy is being developed for numerous applications in the study of 
nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters 
is to identify when nucleation initiates. Typically, the process of identifying the moment that crystals begin to form is 
a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, 
translate the stage, etc.). However, as the speed of the cameras being used to perform these observations increases, 
the ability of a user to “catch” the important initial stage of nucleation decreases (there is more information that is 
available in the first few milliseconds of the process). Here, we show that video shot boundary detection can auto-
matically detect frames where a change in the image occurs. We show that this method can be applied to quickly and 
accurately identify points of change during crystal growth. This technique allows for automated segmentation of a 
digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are 
independent of the user’s ability to observe and react.
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Background
Atomic-scale images of interfaces/defects obtained from 
scanning transmission electron microscopes (STEM) 
have long been used to provide insights into the struc-
ture–property relationships of materials—for example, 
observations of atomic-scale intermixing at interfaces 
in semiconducting/oxide heterostructures have helped 
understand the unique electronic and magnetic proper-
ties of these systems [1, 2]. The development and appli-
cation of the STEM techniques used in these and other 
studies (for example, [3–9]) start from the premise that 
the atoms in the structure do not move. However, the 
systems that are being developed for many novel energy 

technologies are far removed from this paradigm—their 
intrinsic functionality is wholly dependent on the motion 
of atoms. For example, in Li-ion batteries, the charge/
discharge cycle involves the mobility of ions across the 
electrolyte–electrode interface [10]. To identify the key 
aspects of the complex processes and transients occur-
ring in energy technologies, we must therefore develop 
in  situ or operando methods that allow us to observe 
directly the functions of the system taking place during 
operation of the device.

For operando studies of electrochemical reactions, 
inside the in  situ stages developed for STEM shown in 
Fig. 1a allow electrodes and a high-vapor pressure liquid 
electrolyte to be incorporated into the microscope [11–
15], essentially forming a nanobattery. In these experi-
ments, the images are recorded on either charge-coupled 
devices (CCDs) or direct detection complementary metal 
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oxide semiconductor (CMOS) devices that have arrange-
ments of pixels from 1 k × 1 k up to 4 k × 4 k. Under-
standing the electrochemical process involves scientists 
being able to directly image the initial stages of electro-
deposition/nucleation at the electrode surfaces (the for-
mation of Li dendrites). In current detectors, the frame 
rates are typically video rate (33 frames per second) with 
the more advanced cameras operating at 1000 frames per 
second. Future developments in both the microscopes 
and the detectors are expected to push this frame rate up 
by several orders of magnitude. Hence, the data challenge 
for analysis from a region of interest is already significant 
and promises to push the limits of what can be done very 
soon.

Current image capture and analysis is performed 
manually—the user starts the camera and looks for any 
change to occur in the images as they are recorded. 
This is a time-consuming process that requires frames 
to be individually analyzed to identify regions of inter-
est. However, this type of problem—the identification of 
where and when in a series of frames there is a change—
lends itself to automation. Recent trends in digital and 
streaming media have rapidly introduced a number of 
techniques that can be used to automate the analysis of 
videos [16]. These techniques have become increasingly 
important to streaming content providers looking to 
improve video search, indexing, and retrieval. In order to 
perform automated analysis of video, it is typically seg-
mented into a hierarchy of shots. Shots refer to a group of 
frames that make up a single camera action. This process, 
referred to as shot boundary detection (SBD), allows for 

further analysis of digital media by regions of similar 
content. Computational efficiency is crucial to video seg-
mentation in order to provide timely feedback. Previous 
work has been performed to evaluate the performance 
of segmentation techniques based on the video domain, 
type of transition, and type of detection feature [17–19]. 
This provides a baseline for choosing and evaluating suit-
able techniques for the type of data typically produced by 
STEM.

Video is typically stored and transmitted in a com-
pressed format, such as one of the moving picture 
experts group (MPEG) standards. While these com-
pressed formats are convenient for storage and stream-
ing, they are computationally expensive to decompress 
for the purposes of analysis [20]. In the case of STEM 
where image data are captured at a rate of hundreds or 
thousands of frames per second, the expense of decod-
ing the video grows very quickly. In this case, perform-
ing analysis of the compressed stream directly becomes 
an attractive option to increase efficiency. In this paper, 
we demonstrate the use of performing analysis on the 
compressed data stream. The example we use is the 
identification of the electrodeposition of Li during 
charge/discharge of a Li battery. The example identi-
fies the onset of the deposition/first nucleation stages 
of Li metal that can be correlated with a specific volt-
age value controlling these changes. The potential to 
extend this form of compressed analysis to also identify 
where in the frame the process take place first (adding 
a spatial coordinate to the temporal one) will also be 
discussed.

Fig. 1  a Schematic of the operando nanobattery and b high-angle annular dark-field, HAADF, image frame from the movie of the electrodeposited 
Li on a Pt electrode in 1M LiPF6 in PC electrolyte (in a background) [7, 8]
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Methods
Experimental
The in  situ electrochemical STEM experiments were 
performed on a FEI 80–300  kV Cs-corrected Titan 
microscope equipped with Schottky field-emission elec-
tron source, a monochromator, and a CEOS hexapole 
spherical probe aberration corrector. For these experi-
ments, the microscope was operated at 300  keV in 
both bight-field (BF) and high-angle annular dark-field 
(HAADF) modes (Fig.  1b; Additional file  1). All images 
were obtained after calibration of the dose, and the dose 
was kept below ≤0.3 electrons/Å2/s to avoid beam dam-
age effects. All the electrochemical measurements were 
performed with a commercially available Poseiden 500 
(Protochips Inc., Raleigh, NC, USA) microfluidic in  situ 
electrochemical stage, which allows for simultaneous 
observation of dynamic electrochemical measurements 
in the liquid environment. Figure 1a illustrates an in situ 
liquid electrochemical scanning transmission (STEM) 
cell (ec-STEM) used for Li dendrite deposition/strip-
ping in 1M LiPF6 in PC electrolyte with trace amount 
of water as shown in Fig. 1b. The in situ liquid ec-STEM 
cell is made from two silicon microchips containing 
50-nm-thick silicon nitride membranes transparent to 
the electron beam and three Pt microelectrodes, aligned 
parallel to each other. The top electrochemical microchip 
has 500 nm SU-8 spacer and the bottom microchip has 
150 nm gold spacer giving a nominal spacing of 650 nm. 
The electron beam passes through the electrolyte and 
two SixNy membranes allowing for recording the process 
of the Li dendrite growth and dissolution in real-time at 
high spatial and temporal resolution during cyclic vol-
tammetry or galvanostatic charge/discharge process in 
both TEM and STEM modes at 2–3  µL/min flow rate. 
All the cycling voltammetry experiments were conducted 
with a Gamry Reference 600 potentiostat, and synchro-
nized with simultaneous recording of the video sequence 
of Li dendrite deposition/dissolution process at the Pt 
electrode from LiPF6 in PC electrolyte in the in  situ ec-
STEM cell.

Video streaming
Many techniques exist that aim to directly handle com-
pressed video streams for quick and efficient processing. 
These techniques rely on the reduced signal and coeffi-
cients produced as part of the compression process [21]. 
The coefficients generated directly relate to the original 
uncompressed signal and can be used to detect transi-
tions in a video. While there are numerous ways for video 
frames (scenes) to transition, they can typically be cat-
egorized as either a cut or gradual transition [22]. A cut 
occurs when a scene is ended in one frame and a new 
scene begins in the next frame. Gradual transitions are 

a change between two scenes where the content of one 
shot is slowly replaced with that of the next over several 
frames. Both of these types of shot boundaries can come 
in many different forms. In the case of crystal growth 
detection, we expect that after the initial nucleation event 
(a cut scene), a gradual transition will then take place as 
the material grows (this makes the gradual transition the 
most common technique and hence the primary focus of 
this work). An added complication for this type of experi-
ment is that the object of focus (here size and shape of Li 
grains) tends to change over the course of several frames 
as the experiment is performed. With these types of 
gradual transitions, it is important to consider differences 
over a window of time. The window size varies depending 
on the speed and type of the transition. A general win-
dow size can be chosen to fit the transition type as well as 
the type of data observed.

MPEG standard
The MPEG standard provides a set of guidelines for 
video compression and transmission of video at a vari-
able bitrate. The standard makes use of two techniques to 
achieve compression: a block-based motion compensa-
tion and the discrete cosine transform (DCT) [23]. These 
techniques take advantage of the spatial and temporal 
redundancy within a sequence of frames to reduce the 
amount of data necessary to reconstruct the video. The 
foundational component of a video is a frame. A frame is 
an image of a width and height that represents one step in 
a video. These frames often contain regions of similar vis-
ual content within themselves. Storing the values for each 
individual pixel in an image is costly and unnecessary. To 
eliminate these redundant data, the image is divided into 
small blocks called macroblocks (MB), to which the DCT 
is applied. The transformation produces a matrix of coef-
ficients that represent each block of data. In order to fur-
ther minimize the amount of data stored, an additional 
technique called quantization is applied [24]. Quantiza-
tion reduces the transformation coefficient data to the 
smallest possible amount necessary to reconstruct each 
block. This additional step is designed to limit the fre-
quencies stored for the image while reducing many of the 
frequency components to zero for optimal compression.

A video is composed of a series of frames, which 
when played back at a certain frame rate provide a visu-
ally fluid motion. Frames in a video typically have com-
mon data between one or more frames. To eliminate the 
need to store this content for individual frames, special 
frames called prediction frames are used [25]. These 
prediction frames (P-frames) reference other frames or 
MB within a frame which can be found before or after 
the predicted frame. Frames that do not reference other 
frames are referred to as intra-coded frames (I-frames). 
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Frame references are calculated during a phase of the 
encoding process called motion estimation. The result of 
the motion estimation step is a model called the motion 
vector that describes the offset of coordinates shared 
between prediction and reference frames [26].

Types of video transitions
Shot boundary detection is used to segment videos into 
different shots. Shots within a video are sequences of 
frames that make up a single camera action. Shot transi-
tions are generally categorized as a hard cut or gradual 
transition. Hard cuts occur when two consecutive frames 
form the boundary between shots. The frames in Fig.  2 
show an example of a hard cut; these neighboring frames 
have no similar content shared between them. These are 
easily detectable as there is little to no similarity between 
adjacent frames [27]. Gradual transitions take place over 
multiple frames and can have many different effects. The 
number of transition types with varying duration can 
make it difficult to detect [28]. Traditional videos contain 
a number of types such as pans, zooms, fades, and dis-
solves that have differing transitional characteristics. For 
the purpose of identifying the grain growth, the focus will 
be on dissolves. Dissolves occur when the contents of one 
shot transition to the next over some period where the 
shots overlap. The sequence of frames in Fig. 3 shows the 
transition typically found with grain growth. The transi-
tion occurs over multiple frames as the grain begins to 
form.

Encoding information
The videos used here have been encoded using the 
MPEG-2 standard. The MPEG-encoding process gener-
ates a number of statistics for each frame of a video. The 
encoding information can be accessed by partially decod-
ing the compressed video. Partially decoding the video 
eliminates the need to calculate the original frame pixel 

values. The inverse transform performed for full decod-
ing has been found to consume as much 40% of total 
decoding time [29]. Therefore, partial decoding results 
in a significant time savings over other methods. For the 
purposes of this paper, the FFmpeg library [30] is used to 
process and decode video streams. Shot boundary detec-
tion in the compressed domain makes use of features 
derived from the reduced signal to find change. Two 
types of features that can be used in change detection are 
frame and motion information [31]. The frame informa-
tion refers to the type of frame encoding, such as I-frame 
or P-frame. This is important for decision making due 
to the different characteristics of each type of frame. 
Motion information includes the motion vector as well as 
MB motion features, such as the sum of variance (SoV). 
The SoV of each MB is used by the encoder to measure 
the amount of motion within the MB. This MB motion 
information is used by the encoder not only determines 
how the MB will be encoded, but also serves as an indica-
tor of the amount of change occurring within each block.

Frame motion
With the encoded video, the frame and motion informa-
tion can be extracted. Separate analysis of frames based 
on the frame type is carried out to take advantage of char-
acteristics specific to each type. As previously discussed, 
predicted frames contain motion information which var-
ies in size depending on the degree of change. Compared 
to P-frames, intra-coded frames (I-frames) have minimal 
motion information due to their limited relation to other 
frames. Motion information can be used to characterize 
the amount of change occurring within a frame. Scenes 
will have different motion levels, but motion informa-
tion will remain similar within a scene [32]. The measure 
of the level and rate of change is used to detect change 
points within a sequence of frames. There are multiple 
types of motion information available for each frame. 

Fig. 2  An abrupt shot transition is seen when adjusting focus [8]
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One type of motion information is the MB SoV, which 
measures the total motion within a MB [33]. Another 
type of motion information is the motion vector, which 
has been shown to be an effective indicator of change 
between a series of frames. By using the SoV and motion 
information, these measures can be used as an indicator 
of how similar a predicted frame is to its reference frame.

Results and discussion
The results in this section demonstrate the application of 
automated change detection techniques to STEM videos. 
The sample videos are discussed, including the challenges 
presented in the videos and encoding parameters. Next 
the algorithm applied to the videos is explained. This cov-
ers any assumptions made about the data as well as any 
defined parameters. Finally, the results of the algorithm 
applied to the sample videos are shown.

Sample videos
This technique is applied to two sample crystal growth 
videos. The two videos contain visually similar content; 
each starts with a series of nearly static frames, fol-
lowed by rapid crystal growth, and finally gradual reduc-
tion. These growth and reduction occur over a series of 
frames. Frames from each of these transitions are shown 
in Fig.  4, which summarizes the three transitions tak-
ing place in the video. The first row of images shows the 
region of minimal change. The second row shows the 
growth over a series of frames. The third row shows a 
gradual reduction over time.

Before applying automated analysis, it is important to 
discuss the video-encoding parameters. These param-
eters must be carefully chosen so that the encoding algo-
rithm produces output appropriate for analysis. The two 
sample videos in this case were encoded with the FFmpeg 
multimedia library. This library allows for full control 
over the video-encoding process through a series of 
parameters. The parameters chosen for this case encode 
the video as MPEG-2 using a constant frame rate (CFR). 

As opposed to CRF, variable frame rates (VFR) aim to 
eliminate similar content between frames in order to 
decrease the amount of data stored. Using CFR in this 
case reduces additional processing and allows for a fixed 
video quality level.

Algorithm application
Once the video has been encoded in the MPEG-2 format, 
the generated frame measurements previously discussed 
are now available for analysis. Of these, we will focus on 
the MB SoV and frame type. The total MB SoV for each 
P-frame is shown in Fig. 5.

Only the P-frames are considered in this case due to the 
inherent lack of motion information found in I-frames. 
Two visually distinguishable level changes occur in 
this sequence. Regions of static content remain roughly 
level, while rapid level changes indicate the presence of a 
change.

Automated detection
Change is detected by examining sequential differ-
ences in MB SoV between P-frames. The difference sig-
nal is obtained by subtracting the SoV values of adjacent 
frames. This shows the amount of change occurring 
between consecutive frames, which is shown in Fig.  6. 
Regions showing large absolute difference correspond to 
the regions of change in the original signal.

In order to detect regions of change, it is necessary for 
background noise to be low so that transitions are eas-
ily distinguishable. To further reduce noise, we square 
the difference signal. Squaring the difference signal 
emphasizes the change while suppressing low-frequency 
noise. The result provides an absolute difference between 
frames. An example of the noise reduction compared to 
the original difference signal is shown in Fig. 6. The peaks 
in the difference signal make it possible to distinguish 
where transitions occur.

Grouping frames into regions of similar content can 
be done by considering the total change. The cumulative 

Fig. 3  A gradual shot transition is seen as growth occurs [8]
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sum of squared difference for each point provides a 
measure of the total change having occurred to a point. 
The sum of squared differences allows frames to be 
grouped based on the similarity of total change. This 
measure of the total change provides a simple method of 
identifying regions based on the similar levels. Figure  7 
shows an example of the sum of squared differences for 
a video. Areas of little change remain flat, while changes 
will appear as rapid increases or jumps.

To find points best indicating where transitions occur, 
we need to define the characteristics of change. Between 
each frame, we are interested in how much change has 
taken place, which can be measured in two ways: the total 

distance between points and the angle of the vector rela-
tive to the independent axis. As each of these increases, 
the amount of measurable change also increases. To 
quantify this, we define a relevance measure for each pair 
of points [34].

For each pair of adjacent points, the relevance meas-
ure R is calculated. This measures the total change 

�y = yi − yi+1

θ = tan
−1

�y

R =

∣

∣θ ·�y
∣

∣

Fig. 4  Summary of video transitions [8]
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contributed by each of the components. The net change, 
denoted as ∆y, is the change in distance between points. 
Since the points measured by the sum of squared 

differences are the distance from the origin, the net 
change is the difference between the point values. Large 
distances between points indicate a large amount of 

Fig. 5  Macroblock sum of variance

Fig. 6  Difference in macroblock sum of variance compared to the square of the differences
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change over this time. The angle is measured between the 
vector formed by the two points and the horizontal axis. 
In areas with little change, the sum of squared difference 
will be nearly flat which will result in angle near zero. 
For regions of large change, the signal increases rapidly 
resulting in angles near 90°.

Algorithm results
Before automated analysis was performed, the frames in 
the video were manually reviewed for boundaries based 
on the visual change. These manually identified regions 
are listed in Table  1. There are three regions of change 
noted in the video.

Automated analysis is performed based on the detection 
method previously described. Points of change are deter-
mined by applying a threshold to the values of R as defined 
above. The minimum threshold in this case is chosen as 
the 95th percentile. This detection algorithm is applied to 
the video with results recorded in Table  2. These results 
are consistent with the manually annotated results.

The algorithm identifies points of change that form a 
transition, while the regions between transitions can be 

grouped into areas of similar content. It can be seen that 
the algorithm identifies the critical regions where the 
most change takes place. These regions are identified in 
Fig.  8, which shows the points identified in the original 
signal as well as the squared sum of differences.

Points of change can be grouped together to form tran-
sition regions. These regions are formed by grouping 
together points of change occurring near one another. 
For this instance, changes found within ten frames of 
another change are used to form the region.

Algorithm comparison
The technique described in this paper builds upon 
research in the area of shot boundary detection in the 
compressed domain. This analysis technique was chosen 
due to its execution speed and overall performance in 
detecting transitions. Other techniques exist which rely 
on methods such as machine learning, frame-based color 
histograms, and luminance values. While these techniques 
may have similar effectiveness in detecting changes, their 
runtime efficiency is significantly lower. Recent compari-
sons of techniques show that detection in the compressed 
domain can be done in less than real-time, while others 
require much more computational time [18].

Fig. 7  Cumulative sum of squared differences

Table 1  Annotated frames

Frame start Frame end Type

1 185 No change

186 242 Change (growth)

243 266 Change (shrinkage)

267 278 Change (background replacement)

279 387 No change

Table 2  Identified region boundaries

Frame start Frame end

186 209

259 266

267 278
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Conclusions
We have demonstrated that video analysis techniques used 
for shot boundary detection can be used to identify changes 
in the movies showing Li deposition/dissolution process in 
the in situ ec-STEM cell. Shot boundary detection offers a 
wide variety of techniques that can be applied to find points 
of change for different types of transitions and under dif-
ferent conditions. These methods allow for direct opera-
tion on compressed video without the need for full-frame 
decoding, which reduces the computational complexity. 
Metrics based on differences in motion between frames in 
MPEG video in the compressed domain are used. A metric 
is developed based on the total amount of change occurring 
at each point, which is used to identify transition regions. 
Experimental results show positive results for identifying 
the points where changes occur. These techniques could be 
applied to find transition points, which can aid in manual 
interpretation of the results, or potentially be applied to 
direct automatic frame capture.

Future work
The video-encoding step produces a lossy signal 
which is typically avoided in the microscopy com-
munity. As such, this technique is strictly used as an 

automated means of detection. Future work may con-
sider applying different compression algorithms, such 
as the latest H.264 standards. It may also be of inter-
est to investigate other shot boundary detection algo-
rithms that are more computationally expensive given 
that the analysis is a step performed independent of 
the experiment.
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