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Abstract 

We propose an efficient implementation of an interior tomography reconstruction method based on a known subre‑
gion. This method iteratively refines a reconstruction, aiming at reducing the local tomography artifacts. To cope with 
the ever increasing data volumes, this method is highly optimized on two aspects: firstly, the problem is reformulated 
to reduce the number of variables, and secondly, the operators involved in the optimization algorithms are efficiently 
implemented. Results show that 40962 slices can be processed in tens of seconds, while being beyond the reach of 
equivalent exact local tomography method.
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Background
Computed tomography is a permanently evolving X-ray 
imaging technique finding various applications from 
medical imaging to materials science and non-destruc-
tive testing [1]. From a series of radiographs acquired 
at various angles, the interior of the scanned volume 
is reconstructed. In the ideal case, i.e., with a sufficient 
signal-to-noise ratio and a proper modeling, the recon-
struction can be computed relatively easily. However, 
experimental constraints usually move away from the 
ideal case and require more advanced reconstruction 
methods. Among these constraints is the imaging of an 
object bigger than the detector field of view. This setup 
is called local tomography or region-of-interest (ROI) 
tomography.

In local tomography, the detector measures rays com-
ing out of the imaged ROI, and also contributions from 
the external part, as depicted in Fig.  1. As the exter-
nal parts are not imaged for every angle, the data are 
incomplete. This incompleteness is the challenge of local 
tomography, for it can be shown that the object cannot be 
stably reconstructed from the acquired data, even in the 
ROI [2]. The problem of reconstructing a ROI embedded 

in a wider object is called the interior problem. The inte-
rior problem has infinitely many solutions in general, in 
the sense that a solution can differ from another solution 
by an infinitely differentiable function [3].

Local tomography methods basically consist in esti-
mating the exterior of the ROI from the acquired meas-
urements. This can be done with sinogram extrapolation 
(see for example [4, 5]) or in the slice domain. These 
methods, although they can yield satisfactory results, are 
only heuristics in general. Solutions computed with these 
methods often suffer from the cupping effect, which is an 
artifact appearing as a low-frequency bias.

Theoretical investigations, however, found that, with a 
prior knowledge on region of interest, the interior prob-
lem can be solved [6]. This prior knowledge can be about 
the values of a subregion of the ROI or about the nature 
of the solution [7, 8].

In this work, we consider a reconstruction method 
described in [9] where a prior knowledge is available as 
values of a subregion. We show how the reduction of the 
number of unknowns can be coupled with an efficient 
implementation of the involved operators, in order to 
cope with the scales of modern datasets.

Methods
Based on the observation that the filtered backprojection 
with extrapolation provides satisfactory reconstruction 
of medium and high frequencies of the slice, the method 
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aims at improving the reconstructed slice by removing 
the local tomography artifacts visible as low-frequency 
artifacts (cupping effect). This correction is performed 
by representing the reconstruction error in a coarse 
basis, reducing the number of degrees of freedom of the 
problem.

From an exact iterative reconstruction method, the 
reconstruction problem is reformulated to incorporate 
the local tomography setup, the prior knowledge con-
straint and the representation of the image in a coarse 
basis. Each operator of the forward model is ana-
lyzed to enable an efficient implementation. Notably, 
the projector is reduced to a point-projector which is 
efficiently implemented with a sparse matrix-vector 
multiplication.

The local reconstruction implementation is vali-
dated on simulated data for which the cupping effect is 
prominent. The proposed method is compared against 
another exact local reconstruction method also based 
on known region. Two criteria are compared: the num-
ber of required iterations to achieve an acceptable 
reconstruction, and the total execution time. The for-
mer reflects the relative ill-posedness of the problem 
and the performance of the chosen optimization algo-
rithm, while the latter shows how the efficient imple-
mentation of the operators affects the reconstruction 
time. The benchmarks are carried on data compatible 
with modern data volumes, up to 40962 pixels with 4000 
projections.

An iterative correction algorithm for local 
tomography
Local tomography and artifacts
The most common local tomography reconstruction 
method is extrapolating the sinogram before computing 
the filtered backprojection (FBP), hereafter denoted pad-
ded FBP. The extrapolation is usually done by replicating 
the sinogram boundary values. This prevents truncation 
artifact (Gibbs phenomenon) from occurring, and often 
provides acceptable results [10].

However, this technique can fail when the ROI is sur-
rounded by anisotropic and/or strongly absorbing mate-
rial or when the reconstruction has intrinsically low 
contrast (for example different parts with the same linear 
absorption coefficient).

The notable local tomography artifact is the cupping 
effect. On a reconstructed image, local tomography 
artifacts appear as a varying contrast. The gray val-
ues are typically higher far from the center than close 
to the center, forming a “cup.” The cupping is also vis-
ible when plotting an image line passing through the 
center, as a function of the pixel location. Such lines are 
hereby called profiles, for example, the vertical line pro-
file is the vertical line of the image passing through the 
center.

Figure  2 shows the Shepp–Logan phantom with a 
region of interest. Figure 3 shows the reconstruction with 
padded FBP, and Fig.  4 shows line profile of the recon-
struction. The cupping effect is clearly visible in both the 

Fig. 1  In a standard tomography setup (left), the detector field of view is large enough to image the whole object, as all the X-rays passing through 
the object hit the detector for all angles. In a local tomography setup (right), only X-rays passing through the region of interest hit the detector for all 
angles. Image from [12].
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reconstruction image and profile. This cupping effect can 
be detrimental for the post-reconstruction analysis, for 
example, segmentation.

In this work, we examine a family of exact reconstruc-
tion methods based on a known subregion. We imple-
ment a method handling a reduced number of unknowns 
by expressing the image in a coarse basis in order to cor-
rect the cupping effect.

Iterative reconstruction
Iterative methods in tomography are based on optimi-
zation algorithms solving problem (1)

where P is the model of the projection operator, d the 
acquired data, and x is the unknown volume to recover. 
In the remainder of this paper, we consider recon-
struction of a single slice rather than a volume, so x 
shall denote two-dimensional slices. In parallel beam 
geometry, as it is the case in synchrotrons, reconstruc-
tion can be performed by reconstructing the slices 
independently.

In this context, the reconstructed slice x is an image 
of support N × N = N 2, where N is the number of pix-
els of the detector horizontally. The sinogram d sup-
port is N × Np, where Np is the number of projections. 
Thus, the projector is theoretically an operator of dimen-
sions (N × Np, N

2), assuming that slices are stacked as 

(1)Px = d

Fig. 2  Shepp–Logan phantom, 2562 pixels. The right bar indicates 
the gray values, which for real data can be the linear attenuation coef‑
ficient values. The blue circle is the region of interest covered by the 
detector field of view

Fig. 3  Zoom on the region of interest defined by the blue circle in Fig.  2. The support is 1362 pixels. Left ground-truth zoom. Right reconstruction 
with padded FBP. The image is brighter close to the center than far from the center, which is characteristic of the cupping effect. Contrast was 
adapted with respect to the center of the images
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one-dimensional N 2 vectors, and sinograms are stacked 
as one-dimensional N × Np vectors.

As (1) is ill-posed in general, a surrogate problem is 
solved instead, for example, problem (2).

where �·�22 is the squared Frobenius norm and φ(x) is a 
function bringing stability to the solution. A well-known 
example of such methods is the Total Variation minimi-
zation, which promotes images with sparse gradient.

In local tomography, problem (1) is even more ill-posed 
due to the incompleteness of the data d, as explained 
in the introductory part. In order for the solution to be 
acceptable, the exterior of the ROI has to be estimated. 
This can be done by extending the support of x to itera-
tively estimate the exterior by solving (3)

where x̃ is an image with extended support 
N2 × N2 = N 2

2 , where N2 > N , and P̃ is a wider projec-
tor adapted to this new geometry. To compute the data 
fidelity term (here the Euclidean distance between P̃x̃ and 
d), the size of the projected solution has to be consistent 
with the acquired data. Thus, the projection is cropped by 
the means of an operator C to recover the original local 
geometry. The cropping operator C maps an extended 
sinogram of support N2 × Np to a sinogram of support 
N × Np, by keeping only the N central columns. This 
models the truncation in the local tomography setup, 
where the detector is not large enough to image the entire 
object support N2. In practice, the cropping operation is 

(2)argmin
x

{

∥

∥Px − d
∥

∥

2

2
+ φ(x)

}

(3)argmin
x̃

{

∥

∥

∥
CP̃x̃ − d

∥

∥

∥

2

2
+ φ(x̃)

}

implemented inside the projector P̃ by simply restricting 
the projection to the detector limited field of view N. In 
the formulas, the cropping operator C is explicitly sepa-
rated from the projector P̃ to highlight the local setup in 
the forward model.

Efficient implementations of the projection and back-
projection operators enable to solve problem (3). The 
ASTRA toolbox [11], for example, has versatile geome-
try capabilities and built-in algorithms for solving (3) for 
φ(x) = 0.

In this work, we consider the case where a subregion 
is known. This prior knowledge on the volume can be 
used to constrain the sets of solutions. A uniqueness 
theorem was stated in [6] along with a reconstruction 
algorithm based on differentiated backprojection and 
projection onto convex sets to invert the finite Hilbert 
transform. This algorithm, however, is difficult to imple-
ment, and no implementation is readily available for 
experiments.

We focus on a simpler approach based on formal-
ism (3). In this formulation, the prior knowledge can be 
encoded in several ways. The first is to enforce the values 
of x̃ in the known region, for example, using an indica-
tor function. The second is to add a term penalizing the 
distance between the values of x̃ in the known region and 
the actual values. We adopt the latter approach, which 
was proposed, for example, in [12].

Let � denote the domain where the values of the vol-
ume are known. It is a subset (possibly a union of sub-
sets) of the image support N 2, and we denote N� its 
cardinality, that is, the total number of known pixels. Let 
x|� denote the values of x inside the known region. The 
prior knowledge is encoded by φ(x) = �

∥

∥x|� − u0
∥

∥

2

2
 , 

where u0 denotes the known values inside � and � ≥ 0 
is a parameter weighting the fidelity to the known zone. 
Both x|� and u0 have N� components.

Figures 5 and 6 show the reconstruction result on the 
Shepp–Logan phantom with such choice of φ(x). The 
cupping effect is almost removed, but the reconstructed 
slice is also noisy, which is a known effect of least squares 
minimization on an ill-posed problem when running too 
many iterations [13]. On the other hand, many iterations 
are required to reduce the cupping effect.

A workaround on this problem is adding a regu-
larization term to stabilize the solution. A popular 
regularization is Total Variation (TV), promoting piece-
wise-constant solutions. The function φ(x) in (3) can 
then be written φ(x) = �

∥

∥x|� − u0
∥

∥

2

2
+ β�∇x�1, where 

β ≥ 0 weights the regularization. Figures  7 and 8 show 
the result of reconstruction with this method. The recon-
struction is much more accurate and bears almost no 
difference with respect to the ground truth, which is an 
illustration of the uniqueness theorem stated in [6].

Fig. 4  Horizontal line profile in the region of interest. Blue ground 
truth. Green padded FBP reconstruction. The error on the padded FBP 
reconstruction appears as a low-frequency mean bias
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This approach, however, has two drawbacks. The first is 
using a prior which might not be accurate: in this example, 
Total Variation promotes piecewise-constant images and 
is thus not adapted for complex samples. The second draw-
back is on the computational side. Adding a non-differenti-
able prior involves to change the optimization algorithm for 
another probably less efficient in the sense that more itera-
tions are required to reach convergence. In the examples, the 
preconditioned Chambolle–Pock algorithm described in [14] 
was used for the TV minimization. Approximatively, 3000 
iterations are required to approximately get rid of the cupping 
effect (when approximatively 500 are required in the case of a 
complete scan), and more than 10,000 iterations are required 
to get the line profiles shown in Fig.   8. This approach is 
impracticable for modern datasets with increasing amount of 
data: on the one hand, projection and backprojection become 
costly operations, while on the other hand, even more itera-
tions are required due to the higher number of variables.

The main contribution of this work is an efficient 
implementation of the method described in [9]. The 
method is based on the following observation: the pad-
ded FBP reconstruction yields acceptable reconstruction 
of features of the ROI [15], but can suffer from a low-fre-
quency bias (cupping effect). On the other hand, iterative 
algorithms converge slowly due to the high indetermi-
nacy of the problem, even with a known subregion. For 
these reasons, a refinement of the initial reconstruction is 
computed rather than the complete solution.

Correction of the low‑frequency bias
Estimating the reconstruction error
Let x0 be a reconstruction of the region of interest with 
the padded FBP technique and x♯ be the true values of 

the region of interest. Both are slices of support N 2 pix-
els. The reconstruction error, unknown in practice, is 
denoted e = x♯ − x0. This error mainly consists in low-
frequency artifacts (the cupping effect).

In this work, we implement a high-performance ver-
sion of algorithm described in [9], aiming at improving 
an existing reconstruction x0 by removing the cupping 
effect. This is done by solving the problem described by a 
new forward model (4)

where xe is a correction term added to the initial reconstruc-
tion. Here again, x̃0 denotes an extension of the support 
of x0, P̃ is a projection operator adapted to this extended 
geometry, and C is a truncation operator. As the initial 
reconstruction is constant, problem (4) can be rewritten as

where f = d − CP̃x̃0. Problem (5) can be understood as 
fitting the (approximate) reconstruction error f. As the 
reconstruction error in the ROI is e = x♯ − x0, we can 
write

where x̃♯ denotes the whole volume, so that d = CP̃x̃♯  
models the local tomography acquisition. If x0 is extended 
to x̃0 by inserting zeros, then CP̃x̃0 = Px0 as there is no con-
tribution from the external part. However, the quantity of 
interest is the reconstruction error (e) in the ROI, not in the 
whole volume (ẽ). Since the projection of e is different from 
the cropped projection of ẽ, the term d − Px0 only approxi-
mates the projection of the reconstruction error in the ROI. 
This quantity is nevertheless used as an approximation of 
the projection of the reconstruction error in the ROI. Once 
the optimal correction term x̂e is found, the resulting recon-
struction is simply computed as x = C̃(x̃0 + x̂e) where C̃ is 
a cropping operator in the image domain, mapping images 
of support N 2

2  to images of support N 2.

Reducing the degrees of freedom
The principle of the implemented method is to refine 
an initial solution of the local tomography problem, 
knowing that middle and high-frequency features are 
usually well recovered. By focusing on the low frequen-
cies, the complexity of problem (3) can be reduced by 
solving a simpler problem. Complexity reduction is 
achieved by expressing the reconstruction error in a 
coarse basis.

(4)argmin
xe

{

∥

∥

∥
CP̃(x̃0 + xe)− d

∥

∥

∥

2

2
+ φ(xe)

}

(5)argmin
xe

{

∥

∥

∥
CP̃xe − f

∥

∥

∥

2

2
+ φ(xe)

}

(6)

ẽ = x̃♯ − x̃0

P̃ẽ = P̃x̃♯ − P̃x̃0

CP̃ẽ = d − Px0

Fig. 5  Result of iterative reconstruction with standard least squares 
minimization. Contrast was adapted with respect to the center of the 
image
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Gaussian function was chosen as a representation 
basis. The reconstruction error e is estimated by ê as a 
convolution between a finite discrete Dirac comb and a 
two-dimensional Gaussian function gσ defined by Eq. (7)

where u, v denote discrete indexes in the image, and 
σ > 0 is the standard deviation characterizing the Gauss-
ian function. The estimate of the reconstruction error at 
location (u0, v0), ê(u0, v0), is then given by Eq. (8)

(7)gσ (u, v) =
1

σ
√
2π

exp

(

−u2 + v2

2σ 2

)

(8)ê(u0, v0) =
∑

u,v

cu,vgσ (u0 − u · s, v0 − v · s)

where cu,v are coefficients multiplying the Gaussian func-
tions gσ, and s is the spacing (in pixels) between points 
of the Dirac comb. The summation in (8) actually occurs 
on a finite support. In our implementation, the Gaussian 
function is truncated at 3σ at each side, so the sum takes 
place on a ⌊6σ + 1⌋ × ⌊6σ + 1⌋ pixels square.

Estimation (8) is done such that projection of ê has 
minimal Euclidean distance with d − Px0. Let G denote 
the operator mapping the coefficients ci,j to the image ê 
through convolution formula (8). The coefficients vector 
c is estimated by solving Problem (9)

(9)argmin
c

{

∥

∥

∥
CP̃Gc − f

∥

∥

∥

2

2
+ φ(c)

}

Fig. 6  Line profiles of reconstructions of the Shepp–Logan phantom in a local tomography setup. Top line reconstruction profiles for padded FBP 
(blue) and iterative least squares (green). Left middle line of the reconstructed image. Right middle column of the reconstructed image. Bottom line 
difference profiles between the ground truth x♯ and the reconstructions with padded FBP x0 (blue) and iterative least squares x̂ (green). Left middle 
line of the difference image, right middle column of the difference image. The iterative least squares reconstruction almost removes the cupping 
effect, but a high-frequency noise can be seen in the profiles
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where f = d − Px0 and φ(c) is a constraint function on 
the coefficients which is detailed later.

Thus, Problem (9) is solved instead of Problem (3). In 
Problem (9), the unknowns are the coefficients c of the 
coarse basis. As there are much less coefficients c in 
the coarse representation than pixels in the extended 
image support N 2

2 , the degrees of freedom is accordingly 
reduced.

Solving (9) requires the computation of the operators 
C, P̃, G, and possibly their adjoints. The implementation 
of the crop operator C is straightforward, as it consists in 
truncating the sinogram to the size of the acquired data. 
In practice, it consists in modifying the projector P̃ so 

that the projections are limited to the reduced detector 
field of view N2. The operator G can be described as fol-
lows. Coefficients cu,v are placed every s > 0 pixel on an 
image of the size of the extended reconstruction x̃0. This 
image (a two-dimensional Dirac comb in the continuum 
case) is then convolved by the kernel gσ. Lastly, an effi-
cient implementation of the projection and backprojec-
tion operators is needed to solve (9). This is discussed in 
the implementation section.

Adding the known zone constraint
We now describe how the known zone constraint is 
implemented in formalism (9). In work [9], the knowl-
edge available as known zone values in the slice is trans-
lated in the coarse representation basis: a subset of 
Gaussian coefficients is fitted to values in the known zone 
�; these coefficients are then used as a constraint for the 
reconstruction.

In this work, we rather add the constraint directly in 
the pixel zone. The final optimization problem is

High‑performance implementation
After having reduced the number of degrees of freedom 
for problem (4), we describe an efficient implementa-
tion of the involved operators based on look-up tables 
(LUTs).

Projection a of Gaussian tiling
The choice of a Gaussian basis for a coarse representa-
tion of the correction term is based on a characteristic of 
the Gaussian kernel: it is both rotationally invariant and 

(10)argmin
c

{

∥

∥

∥
CP̃Gc − f

∥

∥

∥

2

2
+ β

∥

∥Gc|� − u0
∥

∥

2

2

}

.

Fig. 7  Result of iterative reconstruction with total variation regulari‑
zation. Contrast was adapted with respect to the center of the image

Fig. 8  Line profiles of differences between reconstructions and ground truth. Blue difference between padded FBP x0 and ground truth x♯. Green 
difference between iterative total variation minimization x̂ and ground truth x♯. Left line profile, right column profile. Total Variation minimization 
removes both high- and low-frequency errors, exactly recovering the region of interest
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separable [16]. These two properties provide a computa-
tional advantage: the order of projection and convolution 
can somehow be exchanged.

More precisely, given an image y consisting of the 
Gaussian coefficients evenly placed with a spacing s, the 
standard way to compute P̃Gy is first performing the 
convolution Gy defined by (8) and then projecting with 
P̃. An equivalent computation, however, can be done by 
first projecting the image of isolated points y, and then 
convolving each line of the resulting sinogram by a one-
dimensional Gaussian function. This is illustrated in 
Fig. 9.

This latter approach has two advantages. First, the 
two-dimensional convolution (or two series of one-
dimensional convolution in this separable case) is 
replaced by a series of one-dimensional convolutions. 
Secondly, the projection here only consists in pro-
jecting isolated points. This operation can be opti-
mized by designing a point-projector based on look-up 
tables.

LUT‑based point‑projector
As previously discussed, the operators involved in for-
ward model (10) are a cropping operator, a one-dimen-
sional convolution, and a projector. The convolution can 
be efficiently implemented, either in the Fourier space or 
in the direct space when one of the functions has a small 
support. Therefore, a fast projector is essential for solving 
(10) in an iterative fashion. In our case, the object to pro-
ject has a very special structure, as it consists in points 
spaced by several pixels. Thus, standard projectors of 
tomography softwares can be replaced by a more efficient 
implementation, hereby called point- projector, based on 
look-up tables.

In the remainder, the following notations are used: The 
support of the original image is N 2. The number of pro-
jections is Np, so the acquired sinogram has size N × Np. 
The size of the extended image is N 2

2  where N2 ≥ N . The 
number of Gaussian functions used to tile the support is 
Ng. The spacing between Gaussian blobs on the image 

is s ; thus we have Ng ≃
(

N2
s

)2
 in a first approximation. 

Fig. 9  Illustration of the alternative way of computing the projection of a tiling of Gaussian functions. In the first approach (top line), coefficients are 
evenly placed on the image support (left). This image is then convolved by the 2D Gaussian kernel (green circles), which gives an intermediate image 
(center). This image is projected to obtain a sinogram (right). In the second approach (bottom line), isolated coefficients (left) are projected. Each line 
of the resulting sinogram (middle) is convolved by a 1D Gaussian kernel, to obtain the sinogram (right)
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We also use the following indexes convention : Gauss-
ian coefficients are numbered with i ∈ [0,Ng ], and sino-
gram indexes are numbered with k ∈ [0,Ns] where 
Ns = N2 × Np is the size of the (extended) sinogram.

Each Gaussian coefficient number i ∈ [0,Ng [ is pro-
jected on (at most) Np positions in the sinogram. There-
fore, a look-up table J is built so that for each i, J[i] is the 
“list” of locations in sinogram hit by this point after pro-
jection. The LUT J is an array of size Ng × Np. Each entry 
Ji,j corresponds to a position, in the sinogram, that is hit 
by a projected point i ∈ [0,Ng ]. For example, entry J0,2 is 
an index in the sinogram that is hit by point 0 ; and entry 
J5,j are an indexes hit by point 5 for all j. This is illustrated 
in Figs. 10, 11.

When computing the sinogram, however, the look-up 
table J is best accessed “backward”: for a given position 
k ∈ [0,Ns[ in the sinogram, we have to determine which 
points are hitting it through projection. To this end, two 
look-up tables J and Pos are built. For k ∈ [0,Ns], Pos[k] 
indicates a position in LUT J, and J [pk ] is a coefficient 
number i ∈ [0,Ng ] being projected at position k. There-
fore, the LUT J does not contain sinogram indexes any-
more, but rather coefficient indexes. This is illustrated 
in Fig. 12. The LUT J is re-ordered such that the interval 
[pk , pk+1 − 1] gives access to an indexes range in J ; this 

index range is the set of all coefficients indexes being pro-
jected on sinogram index k.

The point-projector is described by Algorithm  1. The 
matrix W, indexed in the same way as J, contains the 
weights of the projections: depending on the position of a 
point in the image and the projection angle, its projection 
does not exactly fall into a sinogram pixel. The matrix W 
thus encodes the geometric contribution of the projec-
tion of the points.

This projection scheme basically consists in stor-
ing the explicit projection matrix P̃ with a Compressed 
Sparse Row (CSR) format [17], where LUT J corresponds 
to “col_ind,” LUT Pos corresponds to “row_ptr,” 
and matrix W contains the values. Storing the entire 
“linear-algebra” projection matrix without compression 
would entail to store (N 2

2 )× (N2 · Np) elements, which 
is impracticable (for example, more than one terabyte is 
required for a 10242 slice). However, as each slice point is 
projected on at most Np sinogram positions, this matrix 
actually has at most N 2

2 × Np non-zero elements. Addi-
tionally, as the slice is reduced on a coarse basis, there 
are 

(

N2
s

)2
× Np non-zero values to store in this case. The 

format described above is used to store these elements. 
Algorithm 1 is thus no more than a matrix-vector multi-
plication with a sparse matrix in CSR format.

Fig. 10  Principle of the point-projector. Gaussian basis coefficients are placed on the image of N2
2 support (left), with even spacing. Each isolated 

point is projected on at most Np positions in the sinogram (right)
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Algorithm 1 Point projector
sino: sinogram, of size Ns = N2 ×Np

J: LUT, of size Ng ×Np

coeffs: coefficients vector of the Gaussian basis, of size Ng

W: projection weights, of size Ng ×Np

1: procedure pointProjector(sino, J, coeffs, W)

2: for k ∈ [0, Ns − 1] do

3: pos1 = Pos[k]

4: pos2 = Pos[k+1]

5: for j ∈ [pos1, pos2[ do

6: sino[k] += W[j] * coeffs[J[j]]

7: end for

8: end for

9: end procedure

This approach for computing the point-projector is 
friendly in a memory-write point of view: after accumu-
lating the contributions of all coefficients projected on 
position k, the sinogram at index k, sino[k], is updated 
accordingly. This is especially important for GPU imple-
mentation, as consecutive threads access contiguous 
memory locations, which is a coalesced access pattern. 
On GPUs, each memory transaction actually entails 
accessing L bytes, so coalesced access to 32 bits scalars 
results in a read or write of L  /  4 addresses in a single 
transaction (for example, L = 128 for modern NVidia 
GPUs).

Implementation of the adjoint operators
As a gradient-based optimization algorithm is used 
for solving (10), the adjoint of operator CP̃G has to be 
computed. This operator GT P̃TCT  consists in extend-
ing the sinogram with zeros, point-backprojecting 
and retrieving the Gaussian components from the 
backprojected image. As mentioned above, the opera-
tor G can be described as G = HσU  where U is an 
upsampling operator (here with a factor s), and Hσ is 
the convolution with 2D Gaussian kernel (7). Thus, 
GT = HT

σ UT  which is a downsampling followed by a 
convolution with kernel (7). The actual computation 
is then GT P̃TCT = HT

σ UT P̃TCT = UT P̃TH1
σC

T  where 
H1
σ is a one-dimensional convolution on the sinogram 

rows.
As previously, these operations can be merged. As 

GT P̃TCT returns a Gaussian coefficients vector from 
a sinogram, only the coefficients are of interest here. 
Therefore, the point-backprojector P̃T is merged with the 
downsampling UT as previously. For a given coefficient, 
we have to find which sinogram entries backproject on 
the coefficient position. This approach avoids to com-
pute useless Ng × (s − 1)2 backprojections points on the 
image, as it is downsampled afterward.

Fig. 11  Illustration of the look-up table J. The Gaussian coefficients 
placed on the image are stored in a vector of size Ng (top). Each coeffi‑
cient point (indexed in [0,Ng]) is projected on at most Np positions in 
the sinogram. For each i ∈ [0,Ng], the structure J[i] =

{

Ji,0, Ji,1, . . .
}

 
(bottom) contains the list of the sinogram positions hit by projection 
of i. For example, the Gaussian coefficient number 0 is projected on 
sinogram positions J0,0, J0,1 . . .

Fig. 12  Illustration of the LUT-based point-projector. To determine 
which points are projected on position k ∈ [0,Ns] of the sinogram, 
the matrix Pos (bottom) is accessed at index k, and contains the 
value Pos[k] = pk. This value pk is a position in LUT J (middle), so that 
J[pk ] = i1 is the index of one coefficient being projected at index k in 
sinogram. The process is repeated for pk + 1, until pk+1 − 1. The cor‑
responding range in J (shaded orange) indicates coefficient indexes 
that all are projected on sinogram index k.
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The point-backprojector is implemented, as previ-
ously, with a LUT J2 of size Ng × Np and a LUT Pos2 of 
size Ng + 1. The matrix J2 is re-ordered so that for all 
i ∈ [0,Ng [, the interval [Pos2[i], Pos2[i + 1] − 1] corre-
sponds to an index range in LUT J2. This is illustrated in 
Fig. 13.

The point-backprojector is given by Algorithm  2. 
Again, the backprojection from a sinogram to a Gaussian 
coefficients vector corresponds to a matrix-vector mul-
tiplication with a matrix in CSR format. The matrix W2 , 
containing the geometric weights of the backprojector, 
can be viewed as the Column Sparse Storage (CSC) ver-
sion of the matrix W.

Algorithm 2 Point backprojector
coeffs: coefficients vector of the Gaussian basis, of size Ng

sino: sinogram, of size Ns = N2 ×Np

J2: LUT, of size Ng ×Np

W2: backprojection weights, of size Ng ×Np

1: procedure pointBackProjector(coeffs, sino, J2, W2)

2: for i ∈ [0, Ng − 1] do

3: pos1 = Pos2[i]

4: pos2 = Pos2[i+1]

5: for j ∈ [pos1, pos2[ do

6: coeffs[i] += W2[j] * sino[J2[j]]

7: end for

8: end for

9: end procedure

Parallel implementation
In modern experiments carried on X-ray light sources, 
the data volumes, produced by new generations of detec-
tors, always overwhelm the computing power. Simply 
waiting for more powerful machines is of little hope, as 
advances in detectors overrun the Moore’s law. Instead, 
an algorithmic work has to be accomplished to exploit 
parallelism of modern architectures. In the last decade, 
the advent of general-purpose GPU (GPGPU) computing 
was advantageously used, especially in tomography.

The proposed method has been implemented in the 
PyHST2 software [18] used at ESRF for tomographic 
reconstruction, with the CUDA language targeting 
Nvidia GPUs. The point-projector and point-back-
projector, which are the most time-consuming opera-
tors, are implemented as efficient CUDA kernels. As 
for Algorithms 1 and 2, the CUDA point-projector and 
point-backprojector are implemented as matrix-vector 
multiplication with a matrix in CSR format.

We describe here the implementation of the point-pro-
jector, i.e., the computation of the sinogram values sino[k] 
for k ∈ [0,Ns]. The point-backprojector follows the same 

principle. To compute the sinogram value sino[k], the LUT 
J has to be accessed from pk to pk+1 − 1 as illustrated in 
Fig. 13. This memory range is accessed in parallel by threads 
of the many-cores GPU with the following principle. Each 
thread reads m ≥ 1 values in the LUT. With these values J[j], 
where j = pk , pk + 1, . . ., the coefficients vector is accessed 
at coeffs[J [j]]. The threads are grouped in blocks, and each 
thread updates a temporary array in shared memory with 
the contributions read in coeffs[J [j]]. Then, in each block, 
the shared array is accumulated by one thread. The result is 
added to sino[k]. This is illustrated in Fig. 14.

The parallelization is done on the read of matrix J, as it 
is the biggest data structure of the method. As it has been 
re-arranged so that the interval [pos[k], pos[k + 1] − 1] 
is a contiguous memory range in J, the described imple-
mentation has an efficient memory access pattern.

Multi‑resolution Gaussian basis
The correction term xe in model (4) is a tiling of Gaussian 
functions : xe = Gc, where c is the vector of coefficients 
in the Gaussian basis, and G is the operator previously 
described. In a first approach, all the Gaussian functions 
(7) have the same variance σ 2, so that operator G is linear 
and problem (10) is convex. The coefficients are placed 
on a support of size N 2

2  before being (theoretically) con-
volved with a 2D Gaussian kernel. The spacing between 

Fig. 13  Illustration of the LUT-based point-backprojector. To 
determine which sinogram points are backprojected on coefficient 
i ∈ [0,Ng], the matrix Pos2 (bottom), is accessed at index i, and 
contains the value Pos2[i] = qi. This value qi is a position in LUT J2 
(middle), so that J2[qi] = k1 is the index of one sinogram entry being 
backprojected at index i of the coefficients vector. The process is 
repeated for qi + 1 until qi+1 − 1. The corresponding range in J2 
(shaded orange) indicates sinogram indexes that are all backprojected 
on coefficient index i
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points is s, so that the number of required coefficients is 
approximately Ng ≃

(

N2
s

)2
.

Another approach is using different variances depending 
on the position in the image. As only the support N ≤ N2 
of the original reconstruction x0 has to be corrected, Gauss-
ians with a larger support (larger σ) can be used on the exte-
rior of the ROI, further reducing the number of unknowns. 
By using small Gaussians (small σ) inside the ROI, local fea-
tures can be estimated in the correction term xe, while large 
Gaussians are used to roughly estimate the contribution of 
the exterior of the ROI. The new operator G can be written

where σ1, σ2, . . . is a series of standard deviations for the 
Gaussians, and Uj are upsampling operators with different 
factors. This representation is similar to a multi-resolution 
scheme also used in [19]. This multi-resolution basis allows 
to further reduce the number of variables in vector c: in this 
case, Ng <

(

N2
s

)2
. In our implementation, the standard 

deviations are progressively doubled until reaching the diam-
eter of the ROI and then remain constant outside the ROI.

Implementation of (11) is straightforward. The coeffi-
cients in vector c are classified according to the distance 
to the center, forming subsets of coefficients c1, c2, . . . . 
Each subset is point-projected and line-convolved with 
the corresponding σ1, σ2, . . .. The resulting sinograms are 
summed to obtain the projection of Gc.

This representation of correction features as Gaussian 
blobs is actually not a basis in the mathematical sense: 
some images cannot be represented by a linear combina-
tion of Gaussians. However, this representation is very 
close to a basis for σ ≃ s [20]. In our case, we choose 
s = 0.65× σ, meaning that there is a significant overlap 

(11)
G =

∑

j

HσjUj

between the Gaussians. The discrete Gaussian kernel is 
truncated at 3σ, so its length is ⌈6σ + 1⌉ samples.

Optimization algorithm
Efficient optimization algorithms can be used to solve 
the quadratic problem (10). We use the conjugate gra-
dient (CG) algorithm, requiring the computation of the 
adjoint of the involved operators previously described. 
CG also entails matrix-vector multiplications, which are 
efficiently implemented with the CSR representation of 
point-projector and backprojector.

In the GPU implementation, all the involved arrays are 
single precision (float 32 bits) as most GPUs are relatively 
not efficient with 64 bits operations. However, the conju-
gate gradient algorithm involves scalar products. These 
operations are implemented by dedicated kernels returning 
double precision values, as error accumulation is noticeable 
when accumulating on large arrays in single precision.

Results and discussion
In this section, we compare the proposed method with 
the basic exact method described in the second section, 
in term of speed and correction capabilities. The speed 
benchmarks are done with the low- resolution Shepp–
Logan phantom, as the cupping effect is prominent in 
this image. The setup is illustrated in Fig. 15. The size var-
ies in the benchmarks, and the radii of ROI and known 
zone also vary accordingly. The known zone has been 
chosen as a uniform zone. In experimental datasets, the 
known region can be for example regions where the sam-
ple contains air, for which the attenuation coefficient is 
known to be zero.

Figure 16 shows the reconstruction results for the setup 
of Fig. 15. As it can be seen, the cupping effect is mostly 
removed with respect to the padded FBP technique. 
Importantly, the proposed method does not create addi-
tional artifacts when correcting the cupping effect. Fig-
ure  17 shows line profiles of these reconstructions. The 
known zone constraint provides a reconstruction with an 
almost zero mean bias.

In the following benchmark, the following notations 
are used. N is the horizontal size of the initial reconstruc-
tion, i.e., the diameter of the acquired ROI, which means 
that the acquired sinogram has a size N × Np. N0 is the 
horizontal size of the whole object support, unknown 
in practice (for example, N0 = 512 in the case of the 
5122 Shepp–Logan phantom). N2 is the horizontal size 
of the extended reconstruction (N2 > N), which should 
approximate N0. Lastly, Ng is the number of Gaussian 
functions used for the proposed method.

All the tests were performed on a machine with a Intel 
Xeon CPU E5-2643 12 cores 3.40  GHz and a Nvidia 
Geforce GTX Titan X GPU. As the LUT can be used for 

Fig. 14  Illustration of the GPU LUT-based point-projector. The 
memory range [pk , pk+1 − 1] in LUT J (top, shaded orange) contains 
all the indexes needed to be accessed in the coefficients vector to 
compute sino[k]. In this illustration, each thread reads m = 2 values 
in the LUT (red rectangles). The threads are grouped in blocks of n 
threads (blue rectangles). In the block 1, threads t1,1, . . . , t1,n update 
a temporary shared array with their contribution. The same is done 
in block 2, where another temporary shared array is used. Then, one 
thread per block accumulates the results of the shared array and adds 
the results to sino[k]. The addition has to be atomic, as threads from 
several groups might access sino[k] at the same time.
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all the slices of a volume, the computation of the LUT is 
not taken into account. The optimization algorithms used 
are the preconditioned Chambolle–Pock method [14] for 
pixel domain exact method and Conjugate Gradient for 
the proposed method.

We report both the number of iterations needed to 
converge to the objective function minimum and the 
total execution time. This gives information on both the 
efficiency on the optimization algorithm to converge for 
the given problem and on the complexity of each itera-
tion, as the time for one iteration is roughly the total exe-
cution time divided by the number of iterations.

Table 1 summarizes the results of the two methods for 
various setups. For each original phantom size, the two 
methods are tested with two sets of different parame-
ters. For 5122, 10242, 20482, and 40962 original phantom 
shapes, the number of projections are, respectively, 800, 
1500, 2500, and 4000.

The prototype of [9] was run with the parameters of 
Table 1. It yields the following execution times: 11.3 s for 
a 5122 image, 83.1 s for a 10242 image, 842 s for a 20482 
image, and 3630 s for a 40962 image. Although it is still 
better than the “pixel domain approach,” it suffers from 
very long execution times for large images.

In the example of 5122 phantom size, the proposed 
method is executed with an acquired sinogram of width 272 
pixels. The slice is extended to 572 pixels, and the Gaussian 
basis is configured to have 1345 functions in total. 200 itera-
tions yield the reconstruction of Fig. 16 in 10.2 s (without 
taking the LUT computation time). On the other hand, the 
standard pixel domain method is executed with 4000 itera-
tions and yields a reconstruction similar to Fig. 7, although 
of slightly lesser quality, in 123 s. The test is then run for a 
smaller number of Gaussians: the execution time is reduced, 
but the quality is slightly degraded. This is due to the fact 
that the number of Gaussians is determined by the spacing 
s, which itself is linked to the standard deviation σ. Decreas-
ing the number of unknowns (Ng) speeds up the computa-
tions and also increases the width of the Gaussians, so the 
reconstruction error might not be appropriately fitted.

The parameters of the proposed method are essentially 
the size of N2 of the extended slice and the initial value 
for σ. As explained in the multi-resolution subsection, 
the standard deviations are then progressively doubled 
until reaching the ROI radius and then kept to a maximal 

Fig. 15  Example of local tomography setup on the 5122 Shepp–
Logan phantom. The outer circle (blue) is the region of interest. The 
inner circle (green) is the known subregion.

Fig. 16  ROI reconstruction results. Left padded FBP, right proposed. For both images, the contrast was adapted with respect to the center.
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value outside the ROI. Given a size N2, small initial σ 
leads to larger computation times as there are more func-
tions in the basis, so the LUTs are bigger. Larger initial σ 
decreases the computation time but might yield coarser 
results. Figure  18 shows an example of the influence of 
the number of Gaussians Ng on the result in the case of 
a 10242 original phantom. As seeing the profile, the cup-
ping removal is slightly better when Ng is bigger (smaller 
Gaussians), and the error profile is overall closer to zero.

The exact method with pixel domain variables starts to 
be impracticable from 20482 pixels slices , as thousands of 
iterations are required to yield an acceptable image qual-
ity, leading to hours of processing per slice. The execution 
times for 40962 slices were extrapolated from the meas-
ured time on 100 iterations: 373 s; therefore, the PSNR 
are not available in these cases. This method is actu-
ally implemented in Python with the ASTRA Toolbox, 
meaning that only the projection and backprojection are 

Fig. 17  Line profiles of reconstructions with the proposed method and the padded FBP. The proposed method was executed with Ng = 1345 (left) 
and Ng = 729 (right), corresponding to a relatively coarser basis.

Table 1  Execution time for various local tomography setups

The columns (N0, N, N2, Ng) describe the problem setup. The next three columns indicate the results for the proposed method. The next three columns indicate the 
results for the exact method compared against. The first “Time (s)” column contains the execution time for CPU and GPU, in the form. The second ``Time (s)" column 
contains the execution time for the other method. Values followed by (E) were extrapolated from previous running times.

N0 N N2 Ng Its Time (s) PSNR Its Time (s) PSNR

512 272 572 1345 200 10.2/2.31 35.5 4000 123 36.79

512 272 572 729 200 5.86/2.01 34.93 3000 106 35.94

1024 544 1144 1345 300 36.71/5.14 28.03 4000 523 31.56

1024 544 1144 2081 300 60.7/11.4 30.25 8000 1094 37.85

2048 1088 2288 1345 500 235/33.5 27.73 4000 3570 15.13

2048 1088 2288 805 500 129/19.2 24.75 7000 6237 20.71

4096 2176 4576 2081 500 1028/109 24.11 4000 14920 (E) N.A.

4096 2176 4576 1037 500 870/97.6 22.74 7000 26110 (E) N.A.

Fig. 18  Line profile of reconstruction of a 10242 phantom with 5442 
pixels ROI, with different numbers of Gaussian functions
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performed on GPU, so the implementation suffers from 
memory transfers between CPU and GPU. If fully imple-
mented on GPU, one could expect a 5–10 speed-up for 
this method; nevertheless, the proposed method would 
still be ahead.

For both methods, the PSNR is progressively decreas-
ing as the size of the slice increases, yet the reconstruc-
tions are satisfying. We believe this is a consequence of 
the cupping being not entirely corrected on the slice bor-
ders, which brings more and more contribution as the 
number of pixels increase.

The current GPU implementation provides acceptable 
speed-up with respect to the CPU implementation, but 
there is certainly room for improvement as many parts 
in the CPU implementation are single-threaded. The 
computation of the LUT takes several minutes for 40962 
slices, but the same LUT is re-used for all the slices of a 
volume.

Conclusion
We proposed a high-performance implementation of a 
local tomography method aiming at removing the cup-
ping effect. The method consists in iteratively correcting 
an already reconstructed slice and to reduce the recon-
struction error in a Gaussian blobs basis. This implemen-
tation is based on a careful analysis of the optimization 
process, showing that the involved operators can be 
designed especially for this problem.

Results validate the implementation on simulated 
data, showing that the known zone constraint effectively 
enforces an almost zero bias. Benchmarks show that 
40962 slices can be processed in tens of seconds, making 
it able to cope with modern data volumes.
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