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Abstract 

Three different algorithms, as implemented in three different computer programs, were put to the task of extracting 
direct space lattice parameters from four sets of synthetic images that were per design more or less periodic in two 
dimensions (2D). One of the test images in each set was per design free of noise and, therefore, genuinely 2D periodic 
so that it adhered perfectly to the constraints of a Bravais lattice type, Laue class, and plane symmetry group. Gauss-
ian noise with a mean of zero and standard deviations of 10 and 50% of the maximal pixel intensity was added to the 
individual pixels of the noise-free images individually to create two more images and thereby complete the sets. The 
added noise broke the strict translation and site/point symmetries of the noise-free images of the four test sets so 
that all symmetries that existed per design turned into pseudo-symmetries of the second kind. Moreover, motif and 
translation-based pseudo-symmetries of the first kind, a.k.a. genuine pseudo-symmetries, and a metric specializa-
tion were present per design in the majority of the noise-free test images already. With the extraction of the lattice 
parameters from the images of the synthetic test sets, we assessed the robustness of the algorithms’ performances 
in the presence of both Gaussian noise and pre-designed pseudo-symmetries. By applying three different computer 
programs to the same image sets, we also tested the reliability of the programs with respect to subsequent geometric 
inferences such as Bravais lattice type assignments. Partly due to per design existing pseudo-symmetries of the first 
kind, the lattice parameters that the utilized computer programs extracted in their default settings disagreed for some 
of the test images even in the absence of noise, i.e., in the absence of pseudo-symmetries of the second kind, for any 
reasonable error estimates. For the noisy images, the disagreement of the lattice parameter extraction results from the 
algorithms was typically more pronounced. Non-default settings and re-interpretations/re-calculations on the basis of 
program outputs allowed for a reduction (but not a complete elimination) of the differences in the geometric feature 
extraction results of the three tested algorithms. Our lattice parameter extraction results are, thus, an illustration of 
Kenichi Kanatani’s dictum that no extraction algorithm for geometric features from images leads to definitive results 
because they are all aiming at an intrinsically impossible task in all real-world applications (Kanatani in Syst Comput 
Jpn 35:1–9, 2004). Since 2D-Bravais lattice type assignments are the natural end result of lattice parameter extractions 
from more or less 2D-periodic images, there is also a section in this paper that describes the intertwined metric rela-
tions/holohedral plane and point group symmetry hierarchy of the five translation symmetry types of the Euclidean 
plane. Because there is no definitive lattice parameter extraction algorithm, the outputs of computer programs that 
implemented such algorithms are also not definitive. Definitive assignments of higher symmetric Bravais lattice types 
to real-world images should, therefore, not be made on the basis of the numerical values of extracted lattice param-
eters and their error bars. Such assignments require (at the current state of affairs) arbitrarily set thresholds and are, 
therefore, always subjective so that they cannot claim objective definitiveness. This is the essence of Kenichi Kanatani’s 
comments on the vast majority of computerized attempts to extract symmetries and other hierarchical geometric 

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Open Access

*Correspondence:  pmoeck@pdx.edu 
Nano‑Crystallography Group, Department of Physics, Portland State 
University, P.O. Box 751, Portland, OR 97201, USA

http://orcid.org/0000-0002-5511-8482
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-018-0051-z&domain=pdf


Page 2 of 33Moeck and DeStefano ﻿Adv Struct Chem Imag  (2018) 4:5 

Introduction and background
Direct space imaging techniques such as scanning tun-
neling microscopy (STM) and (scanning (S) electron 
probe and high-resolution (HR) parallel illumination) 
transmission electron microscopy (TEM) provide nowa-
days atomic resolution in detected images on a routine 
basis [1–4]. STEM and HRTEM images are typically 
projections from the third dimension and more or less 
2D periodic when crystals are involved. Statistical preci-
sion of down to a few picometers is obtained in the case 
of STEM imaging [1]. This allows for “parametric model 
based imaging” [2, 3] where the accuracies and precisions 
of extracted structural-geometric image parameters are 
statistically estimated on the basis of information theory 
(i.e., maximum likelihood, negative Boltzmann entropy 
[5] or maximum log-likelihood [6] methods) and geomet-
ric inferences [7] are possible.

The information theory approach to the analysis of more 
or less 2D-periodic images is quantitative and considers 
microscopes as channels through which human beings 
obtain structural information about solids at the atomic 
level. The images that the microscopes deliver are “data 
planes” [2, 3] from which quantitative structural-geomet-
ric information is to be extracted (rather than to be inter-
preted visually in a more qualitative way). Local materials 
structure–property relationships can be extracted with 
this kind of approach [4] from scanning probe microscope 
(SPM) images that are atomically resolved. Extracted 
structural-geometric information is to be combined with 
what is obtainable from associated spectroscopic tech-
niques and density functional theory [8] calculations in 
order to facilitate progress towards the developing knowl-
edge-based “design of new materials” paradigm [9].

With some loss of statistical precision, 3D-atomic coor-
dinates and elemental identities can also be determined 
nowadays by STEM from highly defective (poly-phase 
and poly-orientation) nanocrystals by means of “atomic 
electron tomography” utilizing for example 68 different 
2D projections [10]. Small individual organic molecules 
such as oleic acid, CH3(CH2)7CH=CH(CH2)7COOH, 
could possibly be imaged in the future with a low elec-
tron dose in 3D-atomic resolution by electron exit wave 
reconstructions from HRTEM through-focus series (i.e., 
in-line holography) for which the individual images were 
recorded with parallel illumination either in a single pro-
jection [11] or, at most, in a few projections.

The information in the recorded data planes [2, 3] is 
often what is to be modeled (rather than details of the 
imaging process) so that extraction algorithms become 
largely independent of the type of microscope with which 
the data has been recorded [4, 12, 13], see also footnote.1 
As a matter of fact, one may view much of the astonish-
ing progress in atomic resolution STEM and HRTEM of 
the last few decades as taking the information scrambling 
effects of the microscope hardware to a large extent out 
of recorded data. Note in passing that the associated 
reduction of model parameter space dimension develop-
ments [14] along with the emergence of the quantitative 
evidence/knowledge-based materials design paradigm 
and the treatment of images as data planes [15] were all 
foreseen some two decades ago.

Unavoidable noise in the imaging process of more or 
less 2D-periodic arrays of physical objects is a problem 
because it obscures the signal and limits the statistical 
accuracy and precision of extracted structural-geometric 
parameters [1–4, 12]. When systematic imaging errors 
are negligibly small in comparison to random errors and 
the amount of approximately Gaussian noise due to the 
imaging process is also reasonably small, one is justi-
fied in utilizing geometric Akaike information criteria 
(G-AICs) [7, 16–18] for the ranking of evidence in favor 
of scientific hypotheses with respect to their relative like-
lihoods. Both the “accuracy/disagreement” and the “gen-
erality/sophistication” of the models that represent these 
hypotheses are taken into account in an appropriate 
manner by these criteria. A corollary of this approach is 
that no geometric feature extraction algorithm will ever 
deliver definitive results in real-world applications [7, 16].

With real-world applications we mean all kinds of 
applications where noisy experimental data of finite 
resolution is involved, rather than abstract geometric 
entities. One is, however, typically able to identify the 
geometric-structural model that represents the desired 
aspect of image data with a minimum of information loss 
[5, 6]. Relative likelihood ratios [6, 18], which represent 
the strength of quantified evidence in favor of one model 
(or hypothesis) with respect to another, can always be 
calculated on the basis of traditional [6] and geometric 
AICs [7]. So-called “Akaike weights” [6, 18] represent the 

1  Pierre Curie’s well-known symmetry principle needs to be considered 
when the imaging process involves different kinds of physical effects and 
properties of crystalline materials.

features from noisy images (Kanatani in IEEE Trans Pattern Anal Mach Intell 19:246–247, 1997). All there should be 
instead for noisy and/or genuinely pseudo-symmetric images are rankings of the relative likelihoods of classifications 
into higher symmetric Bravais lattice types, Laue classes, and plane symmetry groups.

Keywords:  Lattice parameter extraction, 2D-Bravais lattice type, Pseudo-symmetry, Metric specialization
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probability that a geometric-structural model minimizes 
the unavoidable information loss when it is selected to 
represent experimental data. These weights are also use-
ful for multi-model inferences and predictions. They 
can also be summed up into confidence sets. Individual 
Akaike weights and their confidence sets allow for noise-
level dependent quantitative spreadings of crystallo-
graphic symmetry classifications over several classes [18] 
in databases. In the case of crystallographic symmetry 
classifications, one can combine Akaike weights for clas-
sifications into Bravais lattice types, Laue classes, and 
plane symmetry groups in order to make the total clas-
sification comprehensive [18].

As there are no definitive geometric-structural feature 
extraction algorithms for noisy images, the results of 
different computer programs that represent these algo-
rithms are to be compared to each other in order to gain 
insights into their robustness with respect to the pres-
ence of noise and also their reliability with respect to 
subsequent geometric inferences such as the assignments 
of Bravais lattice types. The main thrust of this paper is, 
however, not the comparison of the relative performance 
of three different algorithms/computer programs [19–21] 
with respect to the task of 2D-lattice parameter extrac-
tions from four sets of synthetic test images [19]. Our 
main thrust is instead to utilize the performance compar-
isons of these geometric feature extraction algorithms as 
illustrations of Kenichi Kanatani’s dictum that all extrac-
tion algorithms for geometric-structural features from 
images are aiming at an intrinsically impossible task in all 
real-world applications.

The assignment of Bravais lattice types, i.e., qualitative 
classifications, are the natural end result of quantitative lat-
tice parameter extractions from more or less 2D-periodic 
images. In a follow-up paper that is to be published else-
where, we will utilize a recently developed G-AIC [17, 18] 
for the classification of the extracted lattice parameter sets 
of this paper into Bravais lattice types. We will also provide 
the respective Akaike weights and confidence sets for dif-
ferent translation symmetry hierarchy branches there.

In the present review, we will only allude to the fact 
that the assignment of higher symmetric Bravais lattices 
to extracted lattice parameter sets on the basis of their 
error bars (and by means of null hypothesis tests) is not 
optimal because the results are bound to be in error inso-
far as they claim to be definitive. This is because of three 
reasons: (i) the intertwined holohedral [22] point/plane 
symmetry and metric relation hierarchy of the 2D-Bra-
vais lattices types (that will be described in detail in the 
following section), (ii) the need for arbitrarily set thresh-
olds in order to deal with symmetries that are unavoida-
bly broken by noise, and (iii) possibly existing (genuine) 
pseudo-symmetries of the first kind [23] and metric 

specializations [24], see also footnotes2 and 3 for more 
explanations on the latter two concepts.

Note that the five Bravais lattice types of the Euclidean 
plane [25, 26] constitute an exhaustive set of translation 
symmetry models in 2D. All complete lattice parameter 
sets that were extracted from more or less 2D-periodic 
images can, therefore, always be classified with a maxi-
mized likelihood as corresponding to one of these Bravais 
lattice types. Any traditional distance measure between 
extracted lattice parameter sets and the five transla-
tion symmetry models that is not properly balanced by 
accounting for the number of fitting parameters will 
always be smallest for the least symmetric Bravais lattice. 
This is the essence of Kenichi Kanatani’s two decades old 
comments on the state of the art of automatic detections 
of symmetries in noisy images [27] and an unavoidable 

2  Pseudo-symmetry refers in general terms to “a spatial arrangement that 
feigns a symmetry without fulfilling it” (M. Ruck as quoted and discussed 
in Ref. [18]). Pseudo-symmetries of the first kind (also referred to as genu-
ine pseudo-symmetries) exist in addition to genuine symmetries that com-
bine to the crystallographic group structure of a noise-free and perfectly 2D 
periodic image. This definition is in compliance with the one mandated for 
pseudo-symmetry by the International Union of Crystallography (IUCr) in 
its on-line dictionary, listed as Ref. [23]. Noise in an image results unavoid-
ably in the turning of all genuine symmetries into pseudo-symmetries of 
the second kind. This includes the loss of the strict translation periodicity 
in both dimensions. When a translational pseudo-symmetry arises from the 
adding of noise to a perfectly 2D periodic (noise-free) image that features a 
metric specialization [24], we speak of a “special” kind of pseudo-symmetry. 
This is because that pseudo-symmetry is per our definition neither of the 
first nor of the second kind because a metric specialization is neither a gen-
uine translation symmetry that combines with genuine point symmetries 
to a genuine crystallographically consistent symmetry group nor a pseudo-
symmetry as defined by the IUCr. As a function of the signal-to-noise level 
of an image, it may become difficult or essentially impossible to distinguish 
between pseudo-symmetries of the first, special, and second kind for prac-
tical purposes. There remains, however, the clear distinction between the 
first and second kind of pseudo-symmetries per our definition or theoreti-
cal purposes (independent of the signal-to-noise level of an image). Transla-
tional pseudo-symmetry of the first kind manifests itself in reciprocal space 
in the form of very weak Fourier coefficient amplitudes of at least one of 
the shortest reciprocal basis vectors that may be barely recognizable in the 
presence of noise. Motif-based pseudo-symmetry of the first kind manifests 
itself in reciprocal space in the form of apparent point symmetries between 
certain Fourier coefficients amplitudes (and phase angles) that seem to 
exist in addition to those of the Laue class (and plane symmetry group) of a 
hypothetical noise-free version of an image. Pseudo-symmetry of the special 
kind manifests itself in a noisy image as a mismatch of the apparent transla-
tion symmetry and the Laue class (and plane symmetry) of a hypothetical 
noise-free version of an image. The mismatch is due to the “detachment” of 
the apparent metric lattice symmetry from the apparent site symmetries of 
the motif that it enables in both direct and reciprocal space.
3  The 2005 edition of Volume A of the International Tables for Crystal-
lography considers metric specialization to represent a case of “metrical 
pseudo-symmetry” that may exist within experimental errors in some lower 
symmetric crystal “accidentally” at some temperature (and pressure) and 
would turn into a translational pseudo-symmetry of the first kind by means 
of anisotropic thermal expansion (or an anisotropic response to a pressure 
change) at some other temperature (or pressure) without a phase transition. 
At the exact temperature and pressure point of a metrical specialization, the 
lattice of a crystal is theorized to be “detached” from its crystal structure 
and space group. The words in italic font and quotation marks in this foot-
note are direct quotes from the above-mentioned most definitive reference 
text and websites in the field.
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consequence of the hierarchy of the translation symme-
tries in the Euclidean plane.

The intertwined metric relation and holohedral point/
plane symmetry-based hierarchy of the Bravais lattice 
types [28, 29] forms the backbone of both the underly-
ing geometric model selection process and our recently 
developed G-AIC procedure [17, 18] that allows for sub-
jective threshold-free Bravais lattice type classifications at 
the given noise level of a more or less 2D-periodic image. 
For some future 2D-periodic images with smaller noise 
levels, the relative likelihoods of assigned higher symmet-
ric Bravais lattices may change somewhat. Smaller noise 
levels per unit cell can, for example, be obtained by the 
processing of larger image areas with significantly more 
repeats of the unit cell. We will expand on all of this else-
where (in other papers) but feel compelled to discuss 
Bravais lattice types in 2D in the following “Bravais lattice 
types in two dimensions” section of this paper, see Fig. 1 
and Table 1, because there are related misconceptions in 
the wider scientific community, e.g., [30–32], and even 
misrepresentations in the scientific literature [33].

A clearing up of these misconceptions is a secondary 
thrust of this paper and important in its own right to sup-
port further developments of algorithms for the extrac-
tion of geometric-structural parameters from more or 
less 2D-periodic images. This is because there is much 
more information on the underlying geometry/structure 
and symmetry in noisy STEM and HRTEM images of 
nearly ideal single crystals [34, 35] and bicrystals [36] to 
be extracted for “structural fingerprinting purposes” than 
just lattice parameters and Bravais lattice types.

Note that Refs. [4, 12], for example, constitute signifi-
cant progress over the current state of the art as they 
fit into the “big, deep, and smart data” schemes of the 
developing materials design approach [9]. Reference [4] 
describes, however, only the extraction of lattice param-
eters as structural identifiers for the spatial location of 
crystals with different phases that are present in the same 
sample. An underlying assumption of the technique in 
Ref. [4] is linear imaging, which, while justified for STM 
and SPM, could be undermined by dynamical scattering 
effects in the case of electron microscopy. Nevertheless, a 
physical-structural model-based image feature extraction 
technique that was developed for one type of microscope 
has in Ref. [4] been transferred to another type of micro-
scope. (The same kind of thing is stated in Ref. [12] and 
described in Ref. [13]).

In the supplemental material to their paper, the authors 
of Ref. [4] mention that classifying extracted lattice 
parameter sets into Bravais lattice types would be a useful 
extension to their algorithm. In their paper itself, these 
authors mention also the technical possibility of extract-
ing local plane symmetry groups by using their sliding 

fast (discrete) Fourier transform windows approach (see 
also Refs. [12] and [37]), but caution that this “would 
require substantial efforts at developing the appropriate 
image classification schemes” [4].

These kinds of classification schemes should ideally be 
a combination of the translation and site4 symmetry parts 
of plane symmetries and based on G-AICs [7, 16–18] in 
order to avoid arbitrarily set thresholds. This is because 
threshold-free translation symmetry classifications can 
be based solely on the maximal likelihood position of a 
few Fourier coefficients (FCs) in the amplitude map of 
the discrete Fourier transform (dFT) of a more or less 
2D-periodic image [17]. Threshold-free classifications of 
plane symmetries require, on the other hand, the knowl-
edge of the intensity values of all pixels (in real space) 
[30] or of the amplitudes and phase angles of all FCs of 
such images (in reciprocal space) [18], but not the FC 
positions in the dFT amplitude map. It is the combina-
tion of these two kinds of information that leads to the 
plane symmetries that need to be classified.

While a certain set of site symmetries constitutes a 
point symmetry group in the Euclidian plane and 
requires a compatible translation symmetry type, a cer-
tain translation symmetry type enables a few sets of site 
symmetries in 2D-periodic images. For example, the site 
symmetries of plane symmetry groups p4, p4mm and 
p4gm all require a square lattice. The square Bravais lat-
tice type, on the other hand, enables three sets of site 
symmetries when (structure-less) lattice points5 are 

4  Site symmetries are the symmetries at individual points in the translation 
periodic motif. The translation periodic motif is the whole content of a unit 
cell and possesses either a symmorphic or a non-symmorphic symmetry. 
Symmorphic symmetry refers to the existence of at least one point in each 
unit cell that possesses the point group of the corresponding plane symme-
try group as its site symmetry. The plane symmetry groups pg, p2mg, p2gg, 
and p4gm are, therefore, non-symmorphic.
5  Lattice points are a mathematical abstraction of both individual atoms 
and groups of atoms that form by themselves the crystallographic basis. Lat-
tice points possess in 3D the symmetry of a sphere at rest, i.e. point sym-
metry ∞∞m, and represent the nodes of a mathematically abstract Bravais 
lattice. As individual atoms may possess the same point symmetry as lat-
tice points when they are at rest (which is of course utterly unphysical), they 
may physically occupy positions with the same translation symmetry as the 
nodes of a Bravais lattice within a “one element crystal” structure. The crys-
tallographic basis is then just a single atom, which is typically of a metallic 
element. Groups of atoms, on the other hand, possess lower point sym-
metries than ∞∞m so that one cannot imagine that they might be physi-
cally located at positions that correspond to the nodes of abstract Bravais 
lattices. The crystallographic basis for the crystal structure is then the whole 
group of atoms. In 2D crystallography, this group of atoms is also called the 
translation periodic motif. The widespread confusion between lattice points 
and individual atoms stems from the fact that both entities may possess the 
same point symmetry (as a time average only in the case of single atoms) so 
that they can be located at positions with the same combination of transla-
tion and site symmetries. As symmetry is involved, i.e. an abstract math-
ematical concept, the confusion is in 3D analogous to that between a space 
group type as a mathematical abstract concept and a crystal structure that 
possesses only as time average the individual symmetries of the same space 
group type.
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expanded into 2D-periodic motifs, which are either sym-
morphic or non-symmorphic [25, 26]. These intertwined 
relationships between site/point and translation symme-
tries in the Euclidean plane are further alluded to in the 
following section and can be utilized to validate Bravais 
lattice type assignments on the basis of extracted lattice 
parameters by the independent route over the compatible 
plane symmetry groups.

Because point and translation symmetries are inter-
twined in the crystallographic description of crystals 
based on more or less periodic images that were taken of 
them, a Bravais lattice type has been correctly assigned 
(in a qualitative way) only when the metric lattice param-
eter relations of Table 1 are obeyed within error bars and 
the site symmetries of the 2D-periodic motif are also 
compatible with this assignment [25]. The obeying of the 
metric lattice parameter relations are thereby quantita-
tive measures and the compatible plane symmetry groups 
are an additional qualitative requirement that needs to be 
obeyed. We will expand on this elsewhere.

Geometric AICs that utilize particularly simple geo-
metric models exclusively, i.e., work in a model param-
eter space of a rather small number of dimensions, 
become employable when microscopes are so good that 
essentially the same image is obtained almost all of the 
time under the same nominal imaging conditions [7, 16–
18]. In other words, systematic errors need to be so small 
that they can be safely neglected with respect to random 
errors that also need to be reasonably small because 
G-AICs are first order approximations.

The general route towards reaching the full potential of 
geometric-structural/physical model-based imaging of 
crystals in STEM, HRTEM, STM, and SPM might be a 
combination of the statistical approach outlined in papers 
such as Refs. [2, 3] with G-AICs [7, 16–18] and relative 
likelihood ratios/model probabilities [6]. Complementing 
aspects of the information in the recorded data are, 
thereby, to be modeled with complementing model sets 
such as compatible Bravais lattice types, Laue classes [38] 
(see also footnote6), and plane symmetry groups.

In addition to the directly following more educational 
section on Bravais lattice types, Fig.  1 and Table  1, the 
rest of the paper comprises five more sections and is 
organized as follows. Information on the synthetic test 
images [19], Fig. 2, is collected in the “Overview I: syn-
thetic test image sets” section of this paper. After that fol-
lows a discussion of the algorithms/computer programs 
[19–21], Table 2, which we employed in this review. This 
is followed by a brief section on particulars of our lattice 

6  All Laue classes in 2D contain twofold rotation points just as all Laue 
classes in 3D contain inversion centers. The point symmetries of the ampli-
tude maps of discrete Fourier transforms display Laue classes of more or 
less 2D periodic images in reciprocal space.

parameter extraction procedures. The “Results and dis-
cussions” section presents the main results of this review, 
Tables 3, 4, 5 and 6, and their discussions. Finally we end 
this paper with a “Summary and conclusions” section.

Bravais lattice types in two dimensions
A widespread misconception about 2D-Bravais lattice 
types in the wider scientific community is that they are 
considered to be independent of the origin and site sym-
metries of the plane symmetry groups. In Refs. [30, 31], 
for example, Bravais lattice types are considered to exist 
without any spatial relationships to the site symmetries of 
the motifs of the processed images that are more or less 
2D periodic. (In Refs. [30, 32], the same has been done 
for 1D-periodic time series).

This practice ignores the origin conventions of the 
plane symmetry [25] (and subperiodic frieze [39]7) 
groups. As a matter of fact, the origins of higher symmet-
ric plane symmetry groups (i.e., all groups higher than p1 
and pg) are indeed fixed by site symmetries of the motif 
higher than the identity operation. Depending on the 
plane symmetry group, the origin is either located at a 
point with a specific site symmetry (higher than the iden-
tity operation) or anywhere along a line where the site-
translation symmetry combination is the same for each 
point on the line. Plane symmetry group p1 is, thus, the 
only group without an origin convention [25]. The origin 
should never be arbitrarily chosen because that deprives 
one from utilizing the totality of the mathematical rela-
tionships between geometric-structural features in 2D 
(and 1D) periodic images, which are indispensable for 
comprehensive crystallographic classifications.

When the goal of a study is, however, not a comprehen-
sive crystallographic classification as, for example, in 
numerous works in computational symmetry that are 
reviewed in Ref. [31] or the Primitive Unit Cell Extrac-
tion of Ref. [19], the plane symmetry group origin does 
not need to be specified. A recent computational symme-
try study that aimed at comprehensive crystallographic 
classifications resulted in an appropriate origin choice8 as 
a byproduct [40]. Arbitrarily set thresholds needed to be 
utilized in order to assign mathematically exact symme-
tries to conspicuous “pseudo-symmetric features” in that 

7  This could also be the reason for inconsistencies in the extraction of frieze 
symmetries in gait sequences (recorded time series) of both a walking 
human avatar and a human being in Ref. [32] as discussed in Ref. [18].
8  Approximate site symmetries were extracted in direct space first for 
objects that were appealing to a human being in Ref. [40] and later on com-
bined with Bravais lattice types for classifications of more or less 2D peri-
odic images into plane symmetry groups. While this is a viable route that 
includes the fixing of the unit cell origin as a byproduct, it will probably be 
difficult to automate. Complications due to noise, defects, translational and 
motif-based pseudo-symmetries of the first kind, as well as a metric spe-
cialization of the translation symmetry were not addressed in a systematic 
way in Ref. [40].
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study. This has, unfortunately, been so far the common 
practice in the computational symmetry as well as 
applied crystallographic image processing communities 
with very few notable exceptions, e.g., [17, 18, 30, 32].

Also confusing to the wider scientific community [33] 
is the existence of the rectangular centered Bravais lat-
tice type in 2D while virtually every materials scientist 
or electron microscopists will be perfectly comfortable 
with the body-centered cubic Bravais lattice type and the 
tungsten structural prototype in 3D. In both cases, it is 
the underlying space symmetry of the lattice points (or 
W, Fe, Cr, Rb,…atoms) that allows for the centerings with 
the consequence that the conventional unit cells [25] 
contain two lattice points (or W atoms in case of tung-
sten), rather than one lattice point (or one W atom) that 
represents the primitive sub-unit cell. As this section of 
the paper is about clarifying crystallographic core con-
cepts that are often misunderstood by the wider scientific 
community, it is fitting to recall key differences between 
lattice points and atoms or groups of atoms, in footnote 
5.

Note that the primitive sub-units and the centered 
(i.e., conventional [25]) unit cells possess the same space 

symmetry. This symmetry just becomes more obvious in 
the case of the centered cells and, therefore, more use-
ful as classification tool (albeit at the minor “intellectual 
expense” of larger unit cells). What is different between 
the two representations of the same space symmetry is 
that an alternative choice has been made for the transla-
tion symmetry part of the space group symmetry.

This is illustrated below by the discussion of the con-
cepts of translational pseudo-symmetry [23] and metric 
specialization [24] for the example of the rectangular 
centered Bravais lattice type in 2D. We will use this exam-
ple as well for the discussion of translation symmetries in 
reciprocal (Fourier) space.

There is an intertwined hierarchy of the 2D-Bravais lat-
tice types based on both their metric properties and the 
holohedral plane symmetry groups. Figure  1 sums this 
hierarchy up. Table 1 gives an overview of the Bravais lat-
tice types of the Euclidian plane and provides informa-
tion on the metric property part of this hierarchy [17, 28, 
29].

It is a common misconception that all 2D-Bravais lat-
tice types are disjoint. This means that many research-
ers assume that there cannot be “transitions” from one 

Fig. 1  Aspects of the intertwined hierarchy of 2D-Bravais lattice types (modified after Refs. [17, 28, 29]). From the bottom to the top of this figure, 
the number of independent lattice parameters (most to the left, which is also the number of independent components of the metric tensors) 
decreases while the number of geometry/symmetry constraints (bold large font numbers most to the right) increases. The plane symmetry hierar-
chy of the Bravais lattice types is illustrated by the middle-left sketch. The type of Bravais lattice at the upper end of a line in this sketch is a special 
case (metric specialization) of the type at its lower end. Solid lines indicate ordinary subgroups in this sketch, the dashed line stands for a set of 
three conjugate plane symmetry subgroups. The plane symmetry groups of the Bravais lattice types (also known as the holohedries) are explic-
itly given by their symbol and number in Ref. [25], e.g., p2 and number 2. The two letter symbols within the nodes of this sketch are the standard 
abbreviations of the 2D-Bravais lattice types, e.g., mp. The order of the plane symmetry groups of the Bravais lattice types is given to the left of this 
sketch and corresponds to the multiplicity of the general position within these groups [25]. The middle-right sketch shows the related hierarchy 
of the primitive unit and sub-unit cell shapes. Short lines that are perpendicular to the basis vectors mark congruence (equal length) in this sketch. 
The ♦ sign signifies the parameters of the primitive sub-unit of the conventional rectangular centered unit cell. All four primitive unit cells and the 
primitive sub-unit of the oc Bravais lattice possess the same area in this sketch. The number of geometric (metric and symmetry) constraints on the 
unit and sub-unit cells has been taken from Refs. [17, 18] and is further elaborated on in Table 1
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Bravais lattice type to another. The concept of metric 
specialization [24] has, however, been created specifically 
to account for the “transition point” (see footnote 3) of 
such a transition. For situations short of a metric speciali-
zation but somewhat close to the actual transition point, 
one utilizes the translational pseudo-symmetry [23] 
concept.

If all 2D-Bravais lattice types were indeed disjoint, there 
would be no hierarchy among them. Also there would be 
no hierarchy of the plane symmetry groups [13, 17, 18, 
25, 26] and no hierarchy between point symmetries in 2D 
[25–27]. As Fig. 1 and the quoted literature shows, all of 
these hierarchies do, however, exist. The square and the 
hexagonal Bravais lattice types are at the top of differ-
ent branches of the 2D-translation symmetry hierarchy, 
Fig.  1, and, therefore, disjoint. A transition from one of 
these two Bravais lattice types to the other by means of 
a gradually increasing translational pseudo-symmetry is 
not possible.

There are actually three different hierarchy branches 
for the 2D-Bravais lattice types: one from the oblique 
(mp) lattice to the rectangular (primitive, op) lattice to 
the square (tp) lattice; another one from the oblique lat-
tice to the rectangular centered (oc) lattice to the square 
lattice; and finally the 3rd branch from the oblique lattice 
to the rectangular centered lattice to the hexagonal (hp) 
lattice, see sketches in the middle of Fig. 1.

This means in the language of inferential statistics [6] 
that the members of each of these branches are ‘nested’ 
(2D-translation symmetry) models. In the language of set 
theory, there are inclusion relations between the trans-
lation symmetry models of the Euclidean plane which 
characterize the individual branches of the hierarchy. The 
models within a branch are said to be non-disjoint.

When one deals with nested (non-disjoint) models, one 
cannot simply select as preferred model the one which 
minimizes (Kullback–Leibler) information loss [6, 7] 
when it is utilized to represent data on the basis of the 
model’s accuracy (as measured by a suitable distance 
measure) alone [27]. A more general model with fewer 
constraints will always fit the data better than a more 
sophisticated model with more constraints [7, 16, 27]. A 
higher symmetric (more constrained) Bravais lattice type 
would by that logic never be selected on the basis of any 
pure distance measure [27].

Geometric AICs [7, 16–18] deal effectively with sets 
of nested (non-disjoint) models because the accuracy 
of each model and its sophistication/generality are both 
properly accounted for (as already mentioned in the 
“Introduction and background” section). There is also 
no requirement for an a priori estimate of the noise level 
when two non-disjoint models are compared by a G-AIC 
in order to find out which of the two models possesses 

the larger likelihood of representing the data with a mini-
mal loss of (Kullback–Leibler) information [16, 18]. After 
the most likely model has been identified in a series of 
such pair-wise comparisons, the (Kullback–Leibler) best 
model is selected and its noise level is estimated (on the 
basis of that particular model). The probability that a cer-
tain translation symmetry type is the one with minimized 
information loss when it is assigned to an image can also 
be calculated. Akaike weights allow for predictions on the 
basis of a weighted average of all of the considered mod-
els [6, 18]. We will expand on this elsewhere.

It is straightforward to derive possible translational 
pseudo-symmetries (of the first kind) from the limit-
ing cases of the lattice parameters of 2D-periodic arrays 
of points as listed in the third column of Table  1. All 
one needs to do is to change a single smaller than (<) or 
unequal (≠) sign in the second column of this table to an 
approximately equal (≈) sign.

For example, if lattice vector magnitudes a♦ and 
b♦ were extracted from a more or less 2D-periodic 
image with error bars ±  Δa♦ and ±  Δb♦ and the 
angle γ♦ between the corresponding vectors a♦ and 
b♦ was extracted with an error bar of ±  Δγ♦ so that 
b♦ − Δb♦ ≤ a♦ ± Δa♦ ≤ b♦ + Δb♦ (or a♦ ≈ b♦ within 
error bars, in other words) and the interval γ♦ ±  Δγ♦ 
contains the 60° value, an ambiguity arises if one is 
dealing with an oblique Bravais lattice, or the primi-
tive sub-unit of a rectangular centered Bravais lattice, 
or a hexagonal Bravais lattice. This ambiguity is due to a 
translational pseudo-symmetry. As shown in the sketch 
in the middle-right of Fig.  1, the ♦ signs (that we used 
above) signify parameters of the primitive sublattice of a 
rectangular centered (oc) Bravais lattice.

The same example can also be discussed on the basis 
of the conventional (i.e., centered) unit cell parameters of 
the oc Bravais lattice type. For this, the interval b ± Δb 
needs to contain the value a

√

3 ±  Δa (or a
√

3 ≈  b in 
other words), while the angle γ between the conventional 
[10] and [01] vectors of this lattice needs to be within an 
error bar that contains the 90° value.

Reducing the widths of the error bars on the extracted 
lattice parameters of this example sufficiently (by, e.g., a 
more accurate extraction that is aided by a lower noise 
level) so that the approximately equal (≈) sign between 
the lattice vector magnitudes can be safely ruled out and/
or the 60° value is excluded from the extracted lattice 
angle interval would be one way to deal with this ambi-
guity. Utilizing a G-AIC and Akaike weights [18] for the 
classification of the lattice parameter set of the preceding 
paragraph would, on the other hand, result for the origi-
nal error bars in model probabilities larger than zero for 
all three members of the Bravais lattice type hierarchy 
branch mp → oc → hp, see Fig. 1. Between these three 
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hierarchy branch members, one could identify one Bra-
vais lattice type as being the most likely translation sym-
metry type given the nested geometric model set (mp, 
oc, and hp), the noisy data, and the set of corresponding 
maximal likelihood lattice parameter extraction results. 
Future data with a lower noise level could result in one 
of the other two models in the set being the most likely 
translation symmetry. We will expand on this elsewhere.

When error bars are zero, i.e., in a mathematically strict 
and abstract sense, the conceptual basis for the above 
discussed translational pseudo-symmetries disappears. 
Correspondingly, approximately equal (≈) signs in the 
relations between the lattice parameters would no longer 
be allowed.

Limiting cases for lattice parameters that lead in the 
abstract mathematical sense from a lower symmetric Bra-
vais lattice type to its higher symmetric counterpart(s) 
are listed in column 3 of Table 1. Note that the approxi-
mately equal (≈) signs of the previous paragraph are in 
the limiting cases replaced by strictly equal (=) signs. A 
collective term for the limiting cases in Table 1 is metric 
specialization [24] in two dimensions.

The number of limiting cases that lead to higher sym-
metric types of Bravais lattices in Table  1 is also the 
number of upward leading lines between nodes in the 
combined 2D-translation/plane symmetry hierarchy 
sketches in the middle of Fig. 1, i.e., two for mp, one for 
op and two for oc. It is also clear from the fourth column 
of Table  1 that the area of the primitive sub-unit cell, 
which contains one lattice point, is doubled when one 
uses the conventional oc Bravais lattice setting (which 
encompasses two lattice points). This is because the oc 
limiting case of the oblique (mp) Bravais lattice type pos-
sesses twice the area of the oblique unit cell. Correspond-
ingly, the hp limiting case of the (oc) rectangular centered 
Bravais lattice type possesses only one half of the rec-
tangular centered unit cell area. Alternative translation 
vectors need, therefore, to be chosen when one “moves 
up” in the mp → oc → hp hierarchy branch, see middle 
sketches in Fig. 1.

As is very well known, Fourier transforms relate corre-
sponding pieces of information in direct and reciprocal 
space to each other per mathematically defined relations. 
The intertwined symmetry and metric properties of a 
Bravais lattice type are, as a consequence, independent 
of the space in which one chooses to work [17, 18]. It is, 
therefore, straightforward to convert the direct space unit 
cell shapes that are sketched on the middle-right hand 
side of Fig. 1 into representations of reciprocal space unit 
cells. All one needs to do in this case is to change annota-
tions and shapes so that they no longer refer to the direct 
space, e.g., change γ = 120° to γ* = 60° (where the * sign 
stands for the reciprocal space).

In the amplitude map of the dFT of a 2D-periodic 
image with one of the plane symmetries that is compat-
ible with the rectangular centered Bravais lattice type, 
i.e., cm or c2mm, one needs to label the ‘diffraction peaks’ 
in a way that index sums are always even because one 
considers all odd integer sum ‘reflections’ as being sys-
tematically absent [25]. As a matter of fact, no Fourier 
coefficient (FC)/reflection is actually (physically) absent. 
We just have to consider all odd index sum reflections in 
2D as possessing zero amplitude in order to obtain a rec-
tangular centered reciprocal unit cell of one half of the 
area of its primitive sub-unit cell so that we have a dou-
bling of the primitive sub-unit cell area in direct space 
[17].

In other words that may be more appealing to materi-
als scientists and electron microscopists, the shortest 
vectors that are present in the [001] oriented transmis-
sion electron diffraction pattern of a very thin cubic 
body-centered crystal (such as tungsten) are of the {110} 
type, i.e., h + k +  l =  even. Analogously, vectors of the 
type {11} are shortest in the amplitude map of a dFT of 
a 2D-periodic array that possesses the rectangular cen-
tered Bravais lattice type. The vectors (h0), (0k) and (hk), 
where h = odd, k = odd, and h + k = odd, are all consid-
ered to have zero amplitude. The first non-zero amplitude 
Fourier coefficients (FCs) along the 〈10〉* and 〈01〉* direc-
tions (in reciprocal space) are then labeled as (20) and 
(02). (For this little example, it was completely immaterial 
that we used analogies between mathematically abstract 
and physically real concepts as well as spaces of either 2 
or 3 dimensions).

This is all very different from systematic absences that 
are due to glide lines in 2D (as well as glide planes and 
screw axes in 3D), where certain “odd reflections” obtain 
zero amplitude by destructive wave interference in single 
scattering experiments or correspondingly by mathemat-
ical superpositions of complex-number valued FCs [25]. 
These reflections or FCs are actually (physically/math-
ematically) absent or genuinely extinct in other words.

Since the point/space symmetry and metric proper-
ties of the Bravais lattice types are intertwined, programs 
such as CrysTBox and CRISP that display dFT amplitude 
maps of more or less 2D-periodic images from which 
they extract lattice parameters allow the user to assess 
the 2D-Laue symmetry class of the images visually. This 
kind of symmetry is based on the amplitudes of the FCs 
around the central (00) peak, rather than their positions 
in this map. The Laue classes in 2D are the six point sym-
metry groups 2, 2mm, 4, 4mm, 6 and 6mm. Four of these 
point symmetries, i.e., 2, 2mm, 4mm, and 6mm, are holo-
hedries and, therefore, in 2D responsible for the one to 
one correspondences between the lattice systems and 
crystal systems.
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References [25, 26] provide good introductions to geo-
metric-structural crystallography, e.g., the intertwined 
nature of the metric relations and plane symmetries that 
characterize the Bravais lattice types. The former of these 
two references is the brief teaching edition [25] of the 
most definitive text on this subject, i.e., volume A of the 
International Tables for Crystallography (which has been 
extensively revised and updated in 2016 in its 6th edi-
tion), and the latter is a good college level textbook with 
emphasis on crystallography in 2D [26].

Overview I: synthetic test image sets
All of the 12 synthetic 2D-periodic images used for our 
lattice parameter extraction review are presented in 
Fig. 2. Eight of these images, i.e., #1, 3, 4, 6, 7, 9, 10, and 
12, were also shown and analyzed in Ref. [19]. Two of 
these images, i.e., #7 and #8 were also discussed in Ref. 
[18]. As mentioned in the abstract, there is per design 
one noise-free (i.e., strictly 2D periodic) image and two 
noisy (i.e., more or less 2D periodic) images in each of the 
four sets of three images. These sets are arranged in col-
umns in Fig. 2.

Fig. 2  Sets of synthetic (256 times 256 pixel) test images arranged in columns where the first image is the one without noise and the second 
and third images were created by adding independent Gaussian noise of mean zero and a standard deviation of 10 and 50% of the maximal pixel 
intensity to the corresponding image in the top row. The images are numbered to provide for straightforward references below. Note that there are 
pronounced motif-based and translational pseudo-symmetries of the first kind in the test images #7 to #9. (In the two noisy images of this series, 
i.e., #8 and #9, as well as in all noisy images of the other three series, there are of course pseudo-symmetries of the second kind due to the addition 
of noise to the noise-free images in the top row.) Because image #10 features a metric specialization (see footnote 3), images #11 and #12 feature 
pronounced translational pseudo-symmetries of a “special” (see footnote 2) kind. Genuine pseudo-symmetries, the effects of added Gaussian noise 
on genuine symmetries, and the metric specialization lead to a somewhat “squarish” visual appearance of the images #7 to #12 and present chal-
lenges to lattice parameter extraction algorithms
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The noise-free images are at the top of each of these 
columns in the first row of Fig. 2. Note that according to 
Kenichi Kanatani’s dictum [16], different geometric fea-
ture extraction algorithms will obtain, even for these four 
images, slightly different results in a systematic manner. 
This must be so because different heuristics that include 
internally defined thresholds and parameters as well as 
approximations are embedded in different algorithms. 
One may think of this loosely as the different algorithms 
themselves introducing some small systematic errors (or 
feature extraction uncertainties) into the lattice param-
eter extraction results, which are more or less specific to 
the processed image [16].

The second row of this figure consists of images where 
independent Gaussian noise of mean zero and a stand-
ard deviation of 10% of the maximal pixel intensity was 
added to the individual pixels. The third row in Fig.  2 
finally provides the test images to which independent 
Gaussian noise of mean zero and a standard deviation of 
50% of the maximal pixel intensity was added.

One may consider the 10% amount of added noise to 
be “small to moderate” relative to the signal in the images 
because the latter is highly redundant due to its 2D-peri-
odic nature. The 50% added noise may then be consid-
ered as “moderate to excessive” with respect to the signal 
in the images for the same reason.

Of all of the test images, the first two in the second 
column, i.e., images #4 and # 5, should present the least 
challenge to any lattice parameter extraction algorithm 
because there is a clear difference in the magnitudes of 
the two lattice vectors and a 90° lattice angle per design 
while additional noise is either non-existent or small 
to moderate. Also these two images are composed of 
approximately 175 “sub-images” of individual unit cells 
so that an effective averaging can take place by suitable 
algorithms to reduce the effective noise level of the aver-
age unit cell.

There are also no genuine pseudo-symmetries per 
design in the noise-free image #4. Note, however, that 
all symmetries in image #5 are only pseudo-symmetries 
of the second kind because all originally existing sym-
metries were unavoidably broken by the addition of 
10% Gaussian noise. (No pseudo-symmetry of the first 
kind was introduced into image #5 per design so that 
all pseudo-symmetries in this image originate from the 
noise-induced breaking of the symmetries that are pre-
sent in image #4).

All of the images in Fig.  2 are calculated images in 
Vasco Ronchi’s sense rather than experimentally detected 
images [41]. The point spread function of the imaging 
instrument is assumed to be exactly known in calculated 
images so that an image can be described with unlim-
ited precision by a perfectly fitting mathematical model. 

In the case of calculated noise-free images that are per-
fectly periodic in 2D, these models are the plane sym-
metry groups [25]. Detected images will always be noisy 
and the prevailing point spread function of the detection 
apparatus will never be exactly known [41]. Experimen-
tally detected images will, therefore, never really pos-
sess Bravais lattices and plane symmetries because both 
concepts are mathematical idealizations. On the other 
hand, it makes a lot of sense to assign Bravais lattices, 
Laue classes, and plane symmetries to detected images 
from crystals that are reasonably periodic in 2D because 
a very large reduction of the dimensionality of the model 
parameter space is obtained by such approximations.

We consider the independent Gaussian noise of mean 
zero that has been added to the images of the top row 
of Fig. 2 in order to create the image pairs #2 #3, #5 #6, 
#8 #9, and #11 #12 as a reasonable equivalent to random 
errors of a hypothetical imaging process [16] by which 
these images could have been detected from strictly 
regular 2D-periodic arrays of points of variable sizes 
and intensities. From the design history of all of the test 
images, it is clear that there are no systematic errors in 
either the translation symmetries or the site symmetries 
within all unit cells throughout all of the synthetic test 
images.

Throughout the remainder of this paper, we follow 
the 2D lattice setting of the CRISP program [21] as valid 
alternative to the crystallographic standard settings [25] 
of Table 1. The direct space unit vector a (or x) points in 
all of the images of this paper from the left to the right 
horizontally (when read into the CRISP program) and the 
unit vector b (or y) is directed vertically upwards.

For a right-handed coordinate system in 3D, this corre-
sponds to a c (or z) vector which points out of the paper 
towards the reader. As one can appreciate visually in the 
first three columns of Fig. 2, this alternative setting of 2D 
lattices leads, most of the time, to lattice vector magni-
tude relationships of the type b < a, but retains the γ > 90° 
condition (of Table 1) for the oblique Bravais lattice type. 
(While in formal disagreement with some of the entries 
in Table 1 in an utterly non-essential way, one is free to 
choose the settings of mp, op and oc Bravais lattices as 
one pleases.)

The three images in the first column in Fig. 2, possess 
per design an oblique Bravais lattice with a b/a ratio of 
approximately 1.0018 and a lattice angle of 90° + arctan 
(3/50). By standard crystallographic convention [25], see 
also Fig. 1, this Bravais lattice type is abbreviated with the 
letter combination mp in Tables 3, 4, 5 and 6 below. To 
the human eye, the horizontal rows of dots appear to be 
identical in image #1 while there are actually very slight 
intensity differences that are periodic in every second 
row. Arrangements such as this are technically analogous 
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to superlattices that arise from atomic ordering in mixed 
crystals. It would, however, be too much to ask of any of 
the tested lattice parameter extraction algorithms/pro-
grams to pick up this miniscule variation of intensities so 
that an experimental b/a ratio of approximately one half 
will be the expected result. When noise is added to image 
#1 in order to produce images #2 and #3, the very tiny 
intensity differences of subsequent horizontal rows of the 
noise-free image are “washed out” so that the features of 
a superlattice are hidden.

Also the plane symmetry of image #1 is p1 per design, 
i.e., the only site symmetry of the 2D-periodic motif is 
the identity (360° rotation) operation. Groups of three 
white dots in this image are related to each other by bro-
ken twofold rotation points so that this image features a 
rather strong motif-based pseudo-symmetry of the first 
kind, or in other words, an intentionally (per design) bro-
ken p2 plane symmetry. (A quantitative measure for this 
pseudo-symmetry is an average Fourier coefficient phase 
angle deviation from 0° or 180°, which has been deter-
mined with CRISP in its default setting to be just 5.7°).

Added independent Gaussian noise of mean zero is 
bound to either exacerbate (as perhaps in images #2) or 
diminish (as perhaps in image #3) this pseudo-symmetry 
of the first kind. Since plane symmetry p2 is holohedric, 
it is also the plane symmetry of the oblique Bravais lattice 
type so that this motif-based pseudo-symmetry (of the 
first kind) does not present a challenge to lattice param-
eter extractions algorithms.

The six images in the second and third columns in 
Fig. 2 possess per design rectangular primitive (op) Bra-
vais lattices. Clearly discernible to the unaided human 
eye are intensity differences in the set of three horizontal 
dots in image #7 at the top of the 3rd column of Fig.  2 
so that one would assign an op Bravais lattice type to this 
image by visual inspection. The other two images of this 
test set (#8 and #9) possess obviously per design that 
same translation symmetry type.

With the intensity differences of the set of dots, i.e., a 
major part of the translation periodic motif of this image, 
somewhat “washed out” in the latter two images, an 
assignment of the qualitatively correct (op) Bravais lattice 
type to these two images by visual inspection becomes 
difficult. This is especially true for the image with the 
largest amount of added noise (#9). The difficulty is due to 
a combination of the per design existing pseudo-symme-
tries (of the first kind, both motif-based and translational 
as in image #7) with the added Gaussian noise in these 
two images of this test image set. In other words, the 
per design existing genuine symmetries (that form plane 
symmetry group pm as a crystallographically allowed 
combination of genuine site and translation symmetries) 
are turned into pseudo-symmetries of the second kind by 

the addition of the noise and it is the combination of both 
kinds of pseudo-symmetries that presents the challenge 
to assigning a qualitatively correct Bravais lattice type by 
visual inspection to images #8 and #9. Apparently, a bro-
ken 4mm point symmetry (and corresponding Laue class 
in Fourier space) arises from the “washing out” of the 
intensity differences of the three dots in the translation 
periodic motif of image #7 so that the lattice constant in 
the horizontal direction is reduced to approximately one 
third of the true lattice constant. The large amount of 
independent Gaussian noise in image #9 exacerbated the 
tendency that is already noticeable in image #8.

The fourth column of Fig.  2 shows three images (#10 
to #12) that possess a translation periodic motif that 
requires a rectangular centered (oc) Bravais lattice. 
Images #11 and #12 show extreme cases of a transla-
tional pseudo-symmetry of the special (see footnote 2) 
kind. This is because of the fact that the noise-free image 
of this set (#10) possesses per design a metric specializa-
tion (see footnote 3) at the primitive sublattice (γ♦ = 90°, 
a♦/b♦ = 1) level. The conventional (centered) lattice pos-
sesses consequently also a metric specialization (γ = 90°, 
√

2a♦/
√

2b♦ = 1).
The primitive sub-units of the lattices of images #10 to 

#12 are per design a perfect square with edges of 12 × 
√

2 
pixels. There are, however, no fourfold rotation points in 
the translation periodic motif of these three images that a 
“genuine [non-detached (see footnote 3)] crystallographic” 
square lattice would require. This is most clearly seen in 
the noise-free image of this test set (#10) for the obvious 
reason that no noise obscures the design (and that there 
are, therefore, no pseudo-symmetries of the second kind).

The distance ratios of the nearest neighbors of all white 
dots in image #10 are either unity or 

√

45/6 and support 
both point symmetry (Laue class) 2mm and the lattice 
centering translation. For the purposes of this review, two 
synthetic images that represent extreme cases of transla-
tional pseudo-symmetry [of the special (see footnote 2) 
kind] due to adding Gaussian noise to a synthetic (noise-
free) image with metric specialization (see footnote 3) 
suffice. (In Ref. [19], the corresponding set of images is 
referred to as “hex lattice with vacancies”, but there are 
neither three- or six-fold rotation points nor vacancies).

When the lattice angle that has been extracted from a 
noisy image is (in direct space) close to 90° or 120° (within 
error estimates) and the magnitudes of the unit cell vec-
tors are close to being equal (within error estimates), 
many researchers would not consider the possible exist-
ence of a rectangular centered Bravais lattice where the 
γ♦ angle can per definition be neither 90° nor 60°.

This is because it somehow seems “more natural” to 
assume that there would neither be a pronounced trans-
lational pseudo-symmetry of the first kind nor a metric 
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specialization with an associated translational pseudo-
symmetry of the special kind. Instead many research-
ers would conclude that these lattice parameters are 
compatible with either the square (tp) or hexagonal (hp) 
Bravais lattice types, if the error bars allow for these con-
clusions. There is, however, no objective basis to rule 
out lower symmetric Bravais lattice types to justify these 
conclusions either by a human being or by a currently 
existing computer program. The Committee on Statisti-
cal Descriptors of the International Union of Crystal-
lography was well aware of this fact when it stated that 
“Thoughtless use of established procedures in widely dis-
tributed software may be as harmful as the natural ten-
dency of most people to prefer results in agreement with 
preconceived ideas.” [42, 43].

As a whole, the test images of this review are ideal as 
objects to assess the performance and robustness of the 
three algorithms/programs on both noise-free and noisy 
images. As a matter of fact, one may consider the calcu-
lated test images to be reasonable equivalents of images 
that have been recorded at different signal-to-noise ratios 
with a “perfect microscope” where the microscope’s point 
spread function is the Dirac delta function.

The calculated noisy test images are also suitable for 
objective (i.e., arbitrarily set threshold free) G-AIC-based 
classifications [7, 16] of their Bravais lattice types on the 
basis of maximal likelihood extracted lattice parameters 
[17, 18] because systematic errors (that are unavoidably 
introduced by the applications of the algorithms) should 
be small compared to random errors that are caused by 
the added Gaussian noise. As already mentioned above, 
we will report on these classifications elsewhere.

As the 2D-lattice parameters of images #1 to #12 are 
known per design, one could make an assessment of 
the accuracy with which the three tested computer pro-
grams extract these parameters on the basis of their a 
priori known values. (In the computational symmetry, 
remote sensing, and computer vision/robotics communi-
ties, these kinds of a priori known values are referred to 
as the “ground truths”.) While we will do this elsewhere, 
below we will use reasonable estimates for error bars 
on the extracted lattice parameters and calculated geo-
metric quantities such as the b/a ratios and the unit cell 
areas that are obtained directly from the outputs of the 
employed programs.

This approach allows for an assessment of the pre-
sumed accuracy and precision of the three tested 
programs on the basis of their outputs alone, i.e., inde-
pendently of the known quantitative design parameters of 
the synthetic test images, and will lead us to conclusions 
on which kinds of precisions are typically obtainable for 
the task at hand. We will, however, use our knowledge of 

the a priori known Bravais lattice types that are assigned 
to the images per design in our discussions.

Overview II: tested algorithms/computer programs
The first of the three algorithms/programs that we tested 
extracts the parameters of primitive 2D lattices in direct 
space [19]. The other two programs utilize reciprocal 
(Fourier) space for the extraction of lattice parameters 
[20, 21] so that they possess the advantage of averaging 
over the periodic direct space information effectively as a 
byproduct. They are, therefore, both expected to perform 
better in the presence of noise than the first algorithm/
program.

Note that we did not make a clear distinction between 
an algorithm and a computer program in the preceding 
paragraph because that is irrelevant to the main thrust 
of this paper. As already stated in the introduction, this 
thrust is to illustrate Kenichi Kanatani’s dictum that there 
are no definitive geometric feature extraction algorithms 
in all real-world applications [7, 16] and, therefore, also no 
definitive extraction results in real-world imaging experi-
ments that could be utilized for a subsequent qualitatively 
definitive crystallographic classification of these results, 
such as the assignment of a 2D-Bravais lattice type.

A good computer program for the extraction of lattice 
parameters from more or less 2D-periodic images is an 
implementation of a suitable algorithm for the task at 
hand. All three of the tested programs fall into this cate-
gory as Refs. [12, 19–21] (and the approximately 300 cita-
tions on Elsevier’s Science Direct website for Ref. [21]) 
attest. As will be illustrated below in the following sec-
tion, the lattice parameter extraction results of all three 
computer programs/algorithms are nevertheless not 
definitive. The reasons that this must be so are provided 
in Refs. [7, 16].

For all three of the tested computer programs, it is up 
to the user to classify the extracted lattice parameters as 
belonging to one of the five types of translation symme-
tries, i.e., 2D-Bravais lattice types, which exist per crys-
tallographic convention [25] in the Euclidean plane. This 
includes also decisions as to whether or not the image 
data are compatible with a centered unit cell so that the 
image is to be classified as featuring the rectangular cen-
tered Bravais lattice type. Table 2 gives a brief overview 
over the employed three computer programs and the 
algorithms behind them.

The CRISP program [21] is the only one of these three 
computer programs that allows also for systematic assess-
ments of possibly existing pseudo-symmetries of the first 
and special kinds. This is because, in addition to extract-
ing the lattice parameters from the intensity distribu-
tion in a noisy (i.e., more or less) 2D-periodic image, the 
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CRISP program outputs allow for the (somewhat subjec-
tive) determination of its Laue class and plane symmetry 
group as part of its electron crystallography [44] support 
functionality. The inherent subjectivity of all of these 
determinations could be overcome by using G-AICs and 
Akaike weights [18], but no suitable computer programs 
are yet available for these kinds of tasks.

For noise-free images that also do not contain distor-
tions (such as the ones shown in the first row of Fig. 2), 
plane symmetry detection is trivial [25] and one can 
assign a perfectly fitting plane symmetry group directly 
by visual inspection. As all site and translation symme-
tries are broken by added Gaussian noise, one can, on the 
other hand, only derive the most likely plane symmetry 
and Bravais lattice type from noisy images by objective 
methods such as G-AICs [7, 16–18] which do not utilize 
arbitrarily set thresholds. We will report on the deter-
mination of the Laue classes and plane symmetries of all 
test images of Fig. 2 elsewhere.

With the CrysTBox program [21], one has at least 
visual access to the dFT amplitude map of more or less 
2D-periodic images so that one may notice when the 
point symmetry of this map (i.e., its Laue class) is in qual-
itative disagreement with the translation symmetry type 
that one would infer from of the extracted lattice param-
eters and their error bars. This helps in detecting pseudo-
symmetries of the first and special kinds.

Also the visual dFT amplitude maps that the CrysTBox 
program outputs are useful for assessing whether or not 
the numerical outputs of the lattice vector magnitudes 
refer to the two shortest reciprocal lattice vectors. These 
kinds of assessments are necessary because the CrysT-
Box program follows the strategy to assign the reciprocal 
lattice basis vectors to FCs with large amplitudes, which 
are not necessarily also the two shortest reciprocal lattice 
vectors. When the numerical outputs of this program 
do not include information on the two shortest recipro-
cal lattice vectors that are visible in the dFT, one needs 
to obtain qualitatively correct lattice parameters by re-
calculating them from the provided numerical outputs of 
the CrysTBox program.

No prior information on the unit cell parameters of the 
“crystalline materials” was used as inputs for the CrysT-
Box and CRISP programs so that they would extract lat-
tice parameters just from the geometric information in 
the images (and could not be aided in any conceivable 
way by their inbuilt databases). This disables error esti-
mations in CrysTBox on the basis of the comparison of 
extracted lattice parameters with their theoretical coun-
terpart for a known crystalline material, magnification, 
and microscope calibration. (As we are concerned in this 
review with the extraction of lattice parameters from 

more or less 2D-periodic images of “unknown materials”, 
this disablement is of no further consequence to us.)

Neither the Primitive Unit Cell Extraction (PUCE) pro-
gram [19] nor the CrysTBox program [20] is designed to 
extract lattice parameters that correspond to rectangular 
centered Bravais lattices. The CRISP program [21], on the 
other hand, possesses this functionality.

For the PUCE program, there are no alternative settings 
or options. A small program was written for a python 
interpreter to prepare the lattice parameter extraction 
results of the PUCE program for listings in Tables 3 and 
5 below. This program also calculates the error estimates 
for these listings for variable choices of error estimates 
for this program’s numerical output and is available on 
request from the second author of this paper.

In case of the CrysTBox program, there are output 
windows for the magnitudes of the direct and recipro-
cal lattice vectors as well as for the magnitude ratios of 
four reciprocal lattice vectors that the program identified. 
One needs to read off the angles between the individual 
FCs in the amplitude map of the dFT that this program 
outputs and add them up in order to obtain the recip-
rocal (and direct space) lattice angle parameters. The 
CRISP program provides result output windows where 
one can read off the reciprocal and direct space lattice 
parameters directly.

It has been reported that the PUCE program performs 
well for images with reasonably small amounts of Gauss-
ian noise [19]. Note that it is explicitly stated in Refs. [12, 
19, 20] that the outputs of the CrysTBox and PUCE pro-
grams are highly accurate and precise. In the case of the 
PUCE program, sub-pixel precisions are stated (at least 
for all of the noise-free images) for extracted Cartesian 
coordinates from which the lattice parameters are to be 
derived [19]. This results for the synthetic test images of 
this review in relative errors on lattice vector magnitudes 
of a few percent.

Analyses of two experimental HRTEM images are men-
tioned in Ref. [20] as examples where reciprocal lattice 
vector magnitudes as extracted with CrysTBox are com-
pared to their theoretical reference values. The extrac-
tion results agreed with the theoretical reference values 
to better than 1%, on average, and were slightly more 
accurate than the lattice parameter magnitudes that two 
experienced human analysts derive from the same images 
by other means. Reference [12] reports an accuracy of 
approximately 0.1% for lattice vector magnitudes that 
were extracted with the CrysTBox program so that trans-
lation periodicity deviations in an epitaxial deposit could 
be quantified in a cross section of a HRTEM sample.

Because sufficiently accurate FC phase angles can be 
extracted by CRISP as part of its electron crystallogra-
phy [44] support functionality, reciprocal lattice vector 
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magnitudes must be extracted with a precision of bet-
ter than one half of a pixel (in reciprocal space) for even 
the highest diffraction orders [21]. This requirement is 
fulfilled by two least-squares refinement cycles for the 
assigned reciprocal lattice.

None of the tested programs provide estimated error 
bars on their outputs in an explicit form (when no theo-
retical reference lattice parameters were entered into the 
inbuilt database of CrysTBox, as mentioned above). The 
CRISP program outputs direct lattice vector magnitudes 
with three digits. The extracted direct space lattice angles 
outputs of this program comprise three digits in case of 
angles smaller than 100° and four digits otherwise.

The other two programs output their results with sig-
nificantly more digits, which we rounded to the same 
presumed order of magnitude accuracy as the results of 
the CRISP program for displays in Tables 3, 4, 5 and 6.

More specifically, the PUCE program outputs Carte-
sian coordinate pairs for the two extracted direct space 
lattice parameters as 32-bit floating point values. From 
these values, the lattice vector magnitudes, their ratio, 
the lattice angle, and the unit cell area were calculated 
(in direct space) with the above-mentioned small python 
program (that is available from the second author of this 
review on request).

The CrysTBox program delivers 5 to 6 digit outputs for 
the magnitudes of direct space lattice vectors and rounds 
the corresponding reciprocal space lattice vectors to 5 
digits after the decimal point. For the reciprocal lattice 
angle, this program delivers four digit outputs including 
trailing zeros.

All three tested computer programs should, in sum-
mary, extract lattice parameters with a high accuracy and 
precision while being based on different algorithms. The 
CrysTBox program is dedicated to analyses of known 
crystalline materials on the basis of electron diffraction 
patterns and offers a Fourier transform route to the pro-
cessing of more or less 2D-periodic images (of known 
and unknown origin) as a sideline. The CRISP program, 
on the other hand, is dedicated to crystallographic image 
processing [13] and electron crystallography [44], but 
also offers complementing analyses of electron diffrac-
tion spot patterns by an extension module.

An ideal geometric feature extraction algorithm would 
provide unbiased (accurate) results when applied to a cal-
culated image. This means that no systematic error would 
be introduced into the extraction results by the algorithm 
itself. The algorithm would also work for any level of 
complexity of the input images. Pre-existing systematic 
errors in synthetic images would be faithfully propagated 
by such an algorithm to the geometric-structural feature 
extraction results along with the faithful propagation 
of the consequences of the noise in the images. Due to 

calculations with real numbers of finite length as floating 
point representations (including 64-bit double-precision 
numbers of the IEEE 754-2008 standard), subsequent 
rounding and calculation errors, utilized approximations 
and heuristics, computer programs that implement geo-
metric feature extraction algorithms can at best come 
close to this ideal [16].

Because we tested three 2D-lattice parameter extrac-
tion computer programs on calculated images that do not 
contain systematic errors by themselves, essentially only 
random errors should have propagated to the extraction 
results if the corresponding algorithm implementations 
were close to the ideal algorithm implementation of the 
preceding paragraph. If the three computer programs/
algorithms that we applied to the images in Fig.  2 were 
indeed close to this ideal, we should have obtained essen-
tially the same lattice parameter extraction results for all 
three of them, whereby the widths of the error bar inter-
vals could have varied somewhat.

Particulars of the employed lattice parameter 
extraction procedures
The default9 settings of the two programs/algorithms that 
extract lattice parameters in reciprocal/Fourier space [20, 
21] were used in parts of this review and the correspond-
ing results are reported in Tables 3 and 5. For the calcula-
tions of dFTs with the CRISP program, we also selected 
the maximal circular area of the images (i.e., a disk with a 
diameter of 256 pixels) as an alternative (non-default) 
setting for the least-squares extraction of lattice parame-
ters. The corresponding results are reported separately in 
Tables 4 and 6.

Informed by our previous work with the CRISP pro-
gram [13], we utilized the manual reciprocal basis vec-
tor assignment option whenever the automatically (by 
default) assigned reciprocal lattice in the dFT amplitude 
map was obviously incorrect by visual inspection. This 
could, for example, be due to a translational pseudo-sym-
metry of the first or special kind. Similarly, we also made 
inferences from the visual inspection of the apparent 
point symmetry in the amplitude map of the dFT, i.e., the 
apparent Laue class, of an image concerning the possible 
existence of a motif-based pseudo-symmetry of the first 

9  Default settings and internal parameters (such as arbitrarily set thresh-
olds) of programs have been implemented by programmers because they 
have empirically been found to work sufficiently well for the majority of 
images from which geometric-structural features are to be extracted. The 
criterion for a useful default setting and internal parameter is that the 
extraction results are to be obtained with a minimum of user interactions 
(e.g. clicks with the mouse). The pre-setting of defaults and internal param-
eters saves the novice user’s time when a computer program is employed on 
images that are deemed to be typical. The non-existing definitive algorithm 
would be able to deliver unbiased geometric-structural feature extraction 
results for any image that belongs to the class for which the algorithm has 
been designed.
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kind or of a metric specialization that has been turned 
into a translational pseudo-symmetry of the special kind 
by noise in that image.

Whenever lattice vectors of the same magnitude were 
extracted with the CRISP program within reasonable 
error estimates, we extracted in addition to the primitive 
lattice parameters also the parameters of a possibly exist-
ing rectangular centered Bravais lattice by using the cor-
responding alternative program setting. With the CRISP 
program, this amounted to just one extra click with the 
computer mouse (and its consequences). The existence 
of a rectangular centered Bravais lattice was then either 
confirmed or rejected on the basis of the traditional plane 
symmetry deviation quantifiers [13, 17, 44] that CRISP 
delivered for both a primitive unit cell in the default set-
ting and a centered unit cell in the alternative setting.

When the CrysTBox program [21] extracted lattice 
parameters from images for which we inferred the pres-
ence of a translational pseudo-symmetry of the special 
kind or of a metric specialization on the basis of the visual 
inspection of the point symmetry in their dFT amplitude 
maps, we used the program’s outputs for the calculation 
of the lattice parameters of an alternatively existing rec-
tangular centered Bravais lattice by hand. Re-calculations 
of the outputs of the CrysTBox program were actually 
necessary in the majority of cases as will be discussed in 
detail in the following section. The corresponding results 
are reported separately in Tables 4 and 6.

Also, the visual dFT amplitude maps that the CrysT-
Box program outputs proved to be very useful for assess-
ments if the numerical outputs of the lattice vector 
magnitudes refer to the two shortest reciprocal lattice 
vectors. Indeed, for images #1 to #3 and #6 to #9, i.e., 
more than half of the images in Fig. 2, we needed to re-
evaluate/re-calculate the lattice parameter outputs of this 
program on the basis of the available visual outputs of the 
dFTs of these images.

As we mentioned already above, the PUCE program 
only extracts primitive lattice parameters per design 
and does not provide any indication that one may have 
actually extracted the parameters of the primitive sublat-
tice of a rectangular centered Bravais lattice or if there 
might be a pseudo-symmetry of the first or special kind. 
As there are also no options in this program, our lattice 
parameter extractions with this program were limited 
to making inputs and receiving straightforward outputs. 
The corresponding results are reported in Tables 3 and 5.

Our approach to estimating the accuracy and preci-
sion of lattice parameter extraction results treats noise-
free and noisy test images as if they originated from the 
(zone-axis projection) imaging of some unknown crystals 
for which only the projected Bravais lattice types but not 
the actual lattice parameters are known. In the "Results 

and discussions" section below, we will, therefore, refrain 
from absolute statements about whether or not extracted 
lattice parameters and results that were derived from 
them are correct in a definitive (quantitative) sense. 
In order to comment on these kinds of results, we will 
instead revert to qualitative likelihood statements. For 
example, when two or even all three of the tested algo-
rithms deliver essentially the same result within reason-
able error bars for an image, they are to be considered as 
correct in a qualitative sense with a high likelihood.

Our assignments of higher symmetric Bravais lattice 
types, i.e., higher than oblique, to noisy images are not 
definitive because we made the point repeatedly above 
that one cannot, as a matter of principle, do such quali-
tative assignments with certainty on the basis of the 
numerical values of the extracted lattice parameters and 
their error estimates in all real-world applications. Only 
when the lattice parameter extraction results required 
the assignment of an oblique Bravais lattice type, we 
did so and consider this as definitive because the cor-
responding translations symmetry is at the bottom of 
the translation symmetry hierarchy as discussed in the 
“Bravais lattice types in two dimensions” section. Also, 
in these cases, there were no doubts at all that a higher 
symmetric Bravais lattice type cannot be present due to 
its exclusion by the error estimates on the extracted lat-
tice parameters.

Assignments of the oblique Bravais lattice type (and 
all higher symmetric types) require that there is genu-
ine translation symmetry present in an image. One could 
argue that this cannot be the case, as a matter of prin-
ciple, when noise is also present in an image. We take 
here the pragmatic position that approximate translation 
symmetry suffices for making translation symmetry type 
classifications feasible for real-world images.

Results and discussions
Besides the fact that all three computer programs/algo-
rithms aimed at an intrinsically impossible task [7, 16] in 
a real-world application when they extracted 2D-lattice 
parameters from the same sets of synthetic test images, 
one would naively expect that they still provide similar 
results in their default settings and without a re-interpre-
tation/re-calculation that is indicated to be necessary by 
a program’s output such as the amplitude map of the dFT 
of an image. As Tables 3 and 5 show, this is often not the 
case.

Results that were obtained with a non-default setting 
of the CRISP program (e.g., mainly one extra click with 
the computer mouse to select the largest possible cir-
cular area of the image for subsequent processing), are 
listed separately in Tables  4 and 6. In these two tables, 
there are also results from the CrysTBox program that 
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were re-interpreted/re-calculated. (As mentioned above 
in the “Particulars of the employed lattice parameter 
extraction procedures” section, such re-interpretations 
and re-calculations were indicated as being necessary 
after inspections of the amplitude maps of the dFTs 
of the corresponding test images.) While both sets of 
tables have the same general outlay, there are only results 
from CrysTBox and CRISP in Tables  4 and 6 since the 
PUCE program possesses only one (default) setting and 
does not provide amplitude maps of the dFTs of the test 
images on which one could base re-interpretations and 
re-calculations.

The agreements between the corresponding entries 
for the extracted lattice parameters in Tables 4 and 6 are 
much better than for their counterparts in Tables 3 and 
5 (where only default settings have been used and no re-
interpretations/re-calculations have been undertaken). 
As there are no genuine error bars given on any of the 
outputs by any of the three programs we tested, we can-
not elucidate how exactly error bar interval widths on the 
extracted lattice parameters correlate with the amount of 
Gaussian noise in the synthetic test images. In a qualita-
tive way, there is obviously such a correlation in Tables 3, 
4, 5 and 6.

While Tables  3, 4 list the extracted direct space lat-
tice vector magnitude ratios and extracted lattice angles, 
Tables 5, 6 do the same for the derived direct space areas 
of the unit cells to which the lattice parameters corre-
spond. The latter two tables are to be read as continua-
tions of the former two tables. The first two columns 
of Tables  5, 6 are, therefore, identical to their counter-
parts in Tables  3, 4. The second column in all four of 
these tables lists the Bravais lattice types that the images 
of Fig.  2 possess per design in compliance with their 
2D-periodic motifs and plane symmetry groups. Note 
that there are comment columns on major aspects of the 
listed results in all of the four tables.

The numerical outputs of the CRISP program were 
taken as significant numbers, i.e., the precision of each 
of the output parameters is assumed to be smaller or 
at most equal to 50% of the last digit of the numerical 
results. This corresponded in our review to a lattice vec-
tor magnitude extraction precision of one twentieth of 
one pixel, which seems reasonable at first sight for sys-
tematic error free synthetic data that underwent two 
least-squares refinement cycles in reciprocal space for 
the reciprocal lattice assignment in CRISP.

That level of presumed precision seems to be too high 
for the lattice angles, at least for the noisy images, as 
noted in a few places in Tables 3, 4 for both the CRISP 
and the CrysTBox programs. In verbal discussions of 
agreements or disagreements of results from the different 
programs for noisy images below, we consider, therefore, 

extracted lattice angles that vary by up to 0.5° as still in 
“reasonable” agreement with their counterparts that 
are imposed by the Bravais lattice types (as known per 
design).

Derived quantities such as the b/a ratios in Tables 3, 4 
as well as the areas of the unit cells in Tables 5, 6 acquired 
precision measures by the standard propagation law of 
estimates, i.e., the sum of absolute values of the partial 
differentials at the extracted values times 50% of the last 
digit of the numerical result (significant number) that are 
associated with the extracted lattice parameters.

As a results of direct space lattice vector magnitude 
extraction precisions of 0.05 pixels for lattice vector mag-
nitudes and 0.05° for lattice angles (for the algorithms 
behind the CRISP and CrysTBox programs), we obtain 
for image #5, for example, relative errors of slightly 
more than 0.5% for both the lattice vector magnitude 
ratios (Tables 3, 4) and unit cell areas (Tables 5, 6). This 
is consistent with the better than 1% (even down to 
approximately 0.1% [12]) accuracy reported for extracted 
reciprocal lattice vector magnitudes from experimental 
images in Ref. [20]. Our assumption that the CrysTBox 
program can deliver precisions for the extracted lattice 
parameters on the same order of magnitude as the CRISP 
program are also justified by these relative errors.

For the outputs of the PUCE program, a lattice vector 
coordinate uncertainty of 0.05 pixels seemed reasonable 
for noise-free images and we based our error propagation 
calculations on this assumed extraction precision. This is 
in reasonable agreement with the stated sub-pixel preci-
sion of lattice vector magnitudes [19] most of the time 
and resulted in error estimates on the derived entries for 
this program in Tables 3 and 5 that are up to one order of 
magnitude larger than for the lattice vector ratios and lat-
tice angles that we obtained with CRISP and CrysTBox.

For the unit cell areas, on the other hand, all three pro-
grams provided error estimates on the same order of 
magnitude. We finally rounded the entries for both the 
CrysTBox and PUCE programs in Tables 3, 4, 5 and 6 to 
the same numbers of digits as the entries for the CRISP 
program.

We list in Tables 3, 4 the angle between the direct space 
lattice vectors, γ, in degrees. An additional superscript on 
the γ angle, i.e., ♦, and an entry between parentheses in 
both tables refers to the primitive sublattice of a possibly 
existing rectangular centered (oc) Bravais lattice, which 
would possess a unit cell that is twice as large in area (in 
direct space) as the primitive sub-unit cell.

The ☼ signs in Tables 3, 4 refer to translational pseudo-
symmetries of the special kind or a metric specialization 
of the primitive sublattice of a rectangular centered Bra-
vais lattice, which cannot be identified from the extracted 
lattice parameters alone but which we know must be 
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present as there were no fourfold rotation symmetries in 
the amplitude maps of the dFTs of images #10 to #12. (As 
the CrysTBox and the CRISP program both display the 
amplitude map of the dFT of a more or less 2D-periodic 
image as outputs, this kind of translational pseudo-sym-
metry or metric specialization can only be identified by 
these two programs so that ☼ signs only show up in the 
corresponding entries for these two programs in Tables 3, 
4).

The ☺ signs in Tables 3, 4 refer to combinations of gen-
uine motif-based and translational pseudo-symmetries 
that are particularly pronounced in the noisiest image 
(#9) of the corresponding set of test images, see Fig.  2. 
As mentioned already in the “Overview I: synthetic test 
image sets” section, the whole set of these test images (#7 
to #9) possesses per design a rectangular (primitive) Bra-
vais lattice with a b/a lattice parameter ratio of one third, 
but the added noise “washes out” the intensity differences 
of the three dots in the translation periodic motif so that 
the lattice vectors appear, essentially, to be of an equal 
magnitude in Fig. 2, resulting in unit cells that are appar-
ently (visually) of the square Bravais lattice type. (These 
three images possess motif-based and translational 
pseudo-symmetries of the first kind per design as already 
mentioned above in the caption of Fig. 2).

As it happens, the direct space dot intensity differ-
ences are too small, even for the noise-free image of this 
set (#7), to be interpreted correctly in a qualitative sense 
by the CRISP program in its default setting, see Table 3. 
This setting comprises both (i) the largest possible square 
image area selection and (ii) the automatic recipro-
cal lattice assignment mode. With the intensity differ-
ences of the designed dots further diminished by added 
noise in images #8 and #9, CRISP in its default setting 
leads within error bars to the extraction of a square Bra-
vais lattice in these two cases as well, which is obviously 
incorrect. A byproduct of CRISP’s failures to extract the 
second linearly independent shortest lattice vectors in its 
default setting are unit cell areas that are only one third of 
the unit cell that the PUCE program obtained for image 
#7, see Table 5.

When the CRISP program is, however, used in alterna-
tive/non-default settings, i.e., (i) largest possible circu-
lar image area selection and (ii) manual reciprocal basis 
vector assignment options, qualitatively correct lattice 
parameters and unit cell areas are obtained within rea-
sonable error bars for all three images of this set, see 
Table 4, so that the rectangular (primitive) Bravais lattice 
type can be assigned as being the most likely translation 
symmetry type.

The results of the manual (non-default) reciprocal basis 
vector assignment settings of the CRISP program are 
marked by ۞ signs in Table 4. The corresponding results 

of the automatic reciprocal lattice assignment setting of 
this program are also listed in Table 4 and carry ☺ signs 
to indicate artifacts of combinations of motif-based and 
translational pseudo-symmetries of the first kind.

The three comment columns in Tables  3, 4 provide 
answers to the question if the extracted/derived results 
are for each of the tested programs in reasonable agree-
ment with the Bravais lattice type that we know the 
images possess due to their design. Note that this ques-
tion concerns only the Bravais lattice type rather than the 
actual values of the lattice parameters. The answers to 
this question are, therefore, qualitative in their nature and 
to be considered (non-definitive) likelihood statements.

A ‘no’ in any of these three columns is a marker for a 
qualitative failure to extract correct lattice parameters by 
the corresponding algorithm/program. A ‘yes’ in either of 
these three columns is to be considered as a marker for 
a qualitatively correct translation symmetry type extrac-
tion, although the extracted lattice parameters may still 
be in error in a quantitative way. This kind of qualita-
tive agreement is on occasions expanded to a ‘yes, but 
…’ when there are disagreements between the numerical 
results that were obtained from images of the same syn-
thetic test image set with either the same program or the 
other two programs.

Obviously, the images of the same test set as shown in 
the individual columns in Fig.  2 should within reason-
able error estimates yield the same lattice parameters and 
derived results because these images possess the same 
translation symmetry per design. In the case of the two 
noisy images of each test set, essentially the same lat-
tice parameters as those of the noise-free image of these 
sets should have been extracted by each of the programs 
within not precisely known error estimates.

Most striking about the entries in Tables  3, 4 on the 
one hand, and Tables  5, 6 on the other hand, are the 
numerous differences in the individual entries. If the 
three tested algorithms were close to the above-men-
tioned unattainable ideal algorithm [16] and their default 
settings and internal parameters were optimally chosen 
by the programmers for the processing of our set of syn-
thetic test images, one would naively expect that their 
extraction results are at least for the noise-free images 
in very good agreement. Obviously, this is not always the 
case. Results that are obviously incorrect (within any rea-
sonable error bars) are marked with red ink in Tables 3 
and 5. Blue markings in these two tables refer to entries 
that are not obviously incorrect but may appear to be so 
due to a program’s inability to extract the lattice param-
eters of a rectangular centered Bravais lattice.

For the entries of the PUCE program in Tables 3 and 5, 
there are two red markings. There are also three markings 
with blue ink in these two tables for the entries of this 
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Table 3  Summary of results obtained by the three programs in their default settings that were put to the task of extract-
ing lattice parameters from images #1 to #12 in Fig. 2 (without any re-calculations/re-interpretations)
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Table 3  continued

The capital case letters BL stands for the Bravais lattice. The two small case letter abbreviations of the Bravais lattice type in the second column follow the 
crystallographic standard convention [25], see also Fig. 1 and the “Bravais lattice types in two dimensions” section. The listed Bravais lattice types are those that 
the images possess per design on the basis of their 2D-periodic motifs and lattice parameters. The ♦ sign in the table headline refers to the primitive sublattice of 
a rectangular centered Bravais lattice. When there are parentheses around an entry in the columns of the unit cell angles and lattice vector magnitude ratios, the 
entry within them refers to a primitive sub-unit of a two times larger rectangular centered unit cell in direct space. Such entries exist only for the CrysTBox and 
CRISP programs since the PUCE program is not designed to give the user any feedback if the extracted unit cell of a more or less 2D-periodic image might be of the 
rectangular centered Bravais lattice type. The ☼ signs refer to translational pseudo-symmetries of the special kind or a metric specialization by design. The ☺ signs refer 
to artifacts of combinations of motif-based and translational pseudo-symmetries of the first kind
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program. They refer to images #10 to #12, where a rectan-
gular centered Bravais lattice type has been implemented 
by design, albeit with either a metric specialization (#10) 
or extreme cases of a translational pseudo-symmetry of 
the special kind (#11 and #12) as visually apparent by the 
somewhat “squarish appearance” of these three images to 
a human being in Fig. 2.

There is nothing in the outputs of the PUCE program 
for these three images that would hint at either the pres-
ence of a rectangular centered Bravais lattice or a metric 
specialization or extreme cases of translational pseudo-
symmetry of the special kind. The program is simply not 
designed for these kinds of assessments as partly attested 
to by its full name “Primitive Unit Cell Extraction”. The 
entries in blue ink in Tables 3 and 5 for the PUCE pro-
gram are, therefore, not to be counted as obviously 

incorrect, so that seven out of nine, i.e., approximately 
77.8%, of the lattice parameter extractions with this pro-
gram are to be considered as yielding results that are in 
qualitative agreement with the per design known Bravais 
lattice types of the images.

The differences between quantitative results that were 
extracted from noise-free images and their noisy coun-
terparts within test image sets are for the PUCE program 
typically larger than that for their counterparts that were 
extracted with the two programs that operate in recipro-
cal space, i.e., CrysTBox and CRISP. In general, there is 
a tendency for the discrepancies of the extraction results 
between the three programs to be more pronounced for 
the noisy images of the test image sets.

It may not be incidental that the two entries in red 
ink for the PUCE program in Tables 3 and 5 refer to the 

Table 4  Summary of  lattice parameter extraction results obtained with  CrysTBox by  re-calculation/re-interpretation 
on the basis of the images’ discrete Fourier transform amplitude maps and with CRISP in non-default settings
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images that feature combinations of motif-based and 
translational pseudo-symmetries of the first kind (per 
design) that are exacerbated by Gaussian noise (#8 and 
#9) which turns the genuinely exiting symmetries into 
pseudo-symmetries of the second kind. The areas of the 
extracted unit cells of these two images in Table  5 are 

only about one third of the area of the unit cell of the 
noise-free (and, therefore, less pseudo-symmetric) image 
in this set, i.e., #7.

For the image with the metric specialization, #10, the 
primitive sub-unit of a rectangular centered Bravais lat-
tice has been extracted with the PUCE program. Within 

Table 4  continued

Entries in parentheses exist now only for the CRISP program, where just one extra click is required to test for the existence of a rectangular centered unit cell whenever 
the extracted lattice vector magnitudes are very close to each other. The ۞ signs refer to reciprocal lattice vector assignments by hand (rather than by the default 
automatic setting) in the CRISP program
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an “extended” error bar of up to 1°, the lattice parameter 
extraction result from image #11 for the PUCE program 
is also compatible with the designed primitive sub-unit of 
the rectangular centered Bravais lattice, see Table  3. For 
the noisiest image in the set, #12, on the other hand, nei-
ther reasonable nor extended error bars allow for an agree-
ment between the quantitative lattice parameter extraction 
results from the PUCE program and the qualitative nature 
of the primitive sub-unit of the rectangular centered 
Bravais lattice that this image possesses per design. It is 
remarkable, however, that the extracted unit cell area of 
image #12 is in very good agreement with the unit cell area 
that was extracted by this program from image #10, see 
Table 5. (We will comment on this further below).

With seven red and three blue markings in Tables 3 
and 5, the CrysTBox program does not seem to 

perform well at first sight when the quantitative out-
puts of the program are not re-interpreted/re-calcu-
lated on the basis of the amplitude maps of the dFTs 
of the images. Tables  4 and 6 paint a very different 
picture precisely because of re-interpretations and 
re-calculations.

The two neither red nor blue markings for CrysTBox 
in Tables  3 and 5 signify extracted lattice parameters 
in qualitative agreement with the a priori known Bra-
vais lattice types for approximately 22.2% (i.e., 2 of 9) of 
the images. For the entries of the CRISP program in its 
default setting, there are four red (and no blue) mark-
ings in Tables  3 and 5, corresponding to extracted lat-
tice parameters in qualitative agreement with the a priori 
known Bravais lattice type for approximately 66.7% (i.e., 8 
out of 12) of the test images.

Table 5  Continuation of  the summary of  results that  were obtained by  the three algorithms/programs in  their default 
settings put to the task of extracting the lattice parameters of images #1 to #12 in Fig. 2 (without any re-calculations/re-
interpretations)
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It is striking that the agreement between the entries in 
Tables  4 and 6, i.e., those that have been obtained with 
non-default settings for CRISP and by means of re-inter-
pretation/re-calculations of a majority of the results from 
CrysTBox, is much better than that between their coun-
terpart in Tables 3 and 5. As a matter of fact, not a single 
entry in the former two tables needed to be marked in 
either red or blue ink when the reciprocal basis vectors 
were selected manually! This indicates that the default 
settings (and internal parameters) of CRISP and CrysT-
Box are not optimal for the synthetic test images of this 
review.

Better lattice parameter extraction results can, for 
example, be obtained with CrysTBox when images edges 
and unit cell axes are not aligned parallel to each other10 
as is the case per design in most of the images in Fig. 2. 

10  Doctor Miloslav Klinger of the Institute of Physics of the Czech Academy 
of Sciences was so kind as to run a rotated version of this image through the 
new β-version of his CrysTBox program and shared his results with us. A 
rotation around the image center by approximately 10° with respect to the 
fixed image edges resulted in the extraction of a pseudo-square lattice with 
relative precisions of the lattice vector magnitudes of better than 0.2%. The 
motivation for this rotation was to break the parallel alignment of the image 
edges and the unit cell edges of the original image design.

This is due to streaking parallel to the image edges in the 
dFT implementation that this program employs.

The default “maximal possible square” image area 
selection feature of the CRISP program also leads to 
streaking, while the non-default “maximal possible circu-
lar” image area selection feature of the CRISP program 
suppresses it quite effectively. The better lattice param-
eter extraction results in Tables 4 and 6 attest to the fact 
that it is generally beneficial to select the maximal pos-
sible circular area of an image for the calculation of the 
discrete Fourier transform in the CRISP program. On the 
other hand, the information in approximately 21.5% of 
a square image is excluded from image processing rou-
tines by this non-default setting of CRISP. An alternative 
way to suppress streaking in the discrete Fourier trans-
form that both programs would probably benefit from is 
described in Ref. [45].

The consequences of streaking in the dFT are clearly 
revealed by the results from image #4 in Table 3, where 
the parameters of an alternative, but less symmetric, and 
therefore incorrect translation symmetry type have been 
extracted by CRISP in its default setting. The extracted 
unit cell parameters of this image refer to the oblique 

Table 5  continued

Entries in parentheses refer to a primitive sub-unit cell of a two times larger rectangular centered unit cell in direct space
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Bravais lattice type, while parameters that are compliant 
with a rectangular (primitive) Bravais lattice type should 
have been extracted instead.

The inspection of the direct space outputs of the CRISP 
program reveals that an alternative set of twofold rotation 
points (in plane symmetry group p2) has been selected by 
this program in its default setting as the unit cell origin 
for image #4. The extraction of a different set of lattice 
vectors is the direct consequence of this origin choice 
which was triggered by streaking in the dFT. Because p2 

is a subgroup of p2mm [25], which this image possesses 
per design, this alternative origin choice ensures that a 
qualitatively correct unit cell area is obtained within its 
error bar for this image, see Table 5, in spite of the lattice 
parameters being obviously wrong, see Table 3.

The inspection of the amplitude map of the dFT of this 
image revealed that the shortest reciprocal lattice vec-
tor has been ignored by CRISP in its default setting and 
that the second and third shortest lattice vectors were 
instead chosen as reciprocal basis. The magnitude of the 

Table 6  Continuation of  the summary of  results that  were obtained with  CrysTBox by  re-calculation/re-interpretation 
on the basis of the images’ discrete Fourier transform amplitude maps and with CRISP in a non-default setting

Analogous to Table 4, entries in parentheses exist only for the CRISP program, where just one extra click is required to test for the existence of a rectangular centered 
unit cell whenever the extracted lattice vector magnitudes are very close to each other
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third shortest reciprocal lattice vector corresponds to the 
reciprocal of the diagonal of the direct space unit cell that 
image #4 possesses by design. The area of the direct space 
unit cell that is obtained for this particular reciprocal lat-
tice basis assignment must, for geometric reasons, match 
that of the rectangular unit cell area that this image fea-
tures per design.

When CRISP is employed to image #4 in a non-default 
setting, i.e., when the maximal possible circular image 
area is selected for the extraction of the lattice parame-
ters so that streaking in the dFT is suppressed, qualita-
tively correct results are obtained, see Tables 4 and 6.

Note that the above-mentioned result of the PUCE 
program on image #12 may fall into the same “category” 
as the result of the CRISP program in its default setting 
for image #4. There are, however, no program outputs 
that would allow us to test this hypothesis. It is, however, 
notable that the extracted and derived lattice parameters 
are again compatible with the oblique Bravais lattice type, 
Table 3, while being qualitatively incorrect. The extracted 
lattice angle of 135.9° is remarkably close to what one 
would expect if the diagonal of the designed unit cell was 
taken as one of the unit cell parameters in direct space, 
i.e., 135.0°. The area of the derived unit cell of image #12 
is remarkably close to the one that has been derived with 
the PUCE program for image #10, i.e., the noise-free 
image of this set, see Table 5.

The comment columns of Tables  5, 6 are of particu-
lar importance for images that possess per design the 
oblique Bravais lattice type and plane symmetry group 
p1, i.e., images #1 to #3. This is because there is no crys-
tallographic origin convention [25] for this particular 
combination of plane symmetry group and Bravais lattice 
type (as already mentioned in the “Bravais lattice types 
in two dimensions” section), so that there is arbitrariness 
in the selection of the lattice parameters in direct space. 
One can, therefore, not decide solely on the basis of the 
entries in Table 3 for these three images and for all three 
tested algorithms if the extracted lattice parameters are 
in agreement. Any extracted or derived lattice param-
eter set must, however, represent one lattice point so that 
the areas of the derived unit cells must be of the same 
size, within reasonable error estimates, if the extraction 
results are to be qualitatively correct.

Armed with this insight, we note that the unit cell areas 
for images #1 to #3 that were derived on the basis of the 
extraction results of the CrysTBox program are very dif-
ferent from those that were derived on the basis of the 
extraction results of both the CRISP and the PUCE pro-
grams, see Table 5. We conclude, therefore, that the lat-
tice parameters that the CrysTBox program extracted 
for the images that possess an oblique Bravais lattice per 
design (#1 to #3) are all in need of a re-interpretation, 

although they are at least consistent within this set of 
test images. The inspection of the amplitude maps of the 
dFTs of images #1 to #3 and of the corresponding maps 
of the other four images (#6 to #9) for which entries in 
red ink exist for the CrysTBox program in Tables 3 and 
5 revealed that the reciprocal lattice assignment was not 
based on the two shortest reciprocal lattice vectors in the 
amplitude maps.

In reciprocal (Fourier) space, a human operator would 
always assign [10]* and [01]* labels to the two shortest 
lattice vectors in the amplitude map of a dFT regardless 
of their intensity when she or he intents to extract the 
direct space lattice parameters for subsequent Bravais 
lattice type assignments. As already mentioned in the 
“Overview II: tested algorithms/computer programs” 
section, the CrysTBox program follows a different strat-
egy. A reciprocal lattice is assigned by this program on 
the basis of it being highly precise rather than outlining 
one genuine reciprocal unit cell. This means that the two 
shortest reciprocal lattice vectors may not be selected as 
reciprocal basis when they have a rather low intensity.11

Since we saw from the amplitude map of the dFT of an 
image which reciprocal lattice spots had been selected as 
the reciprocal basis vectors by the CrysTBox program, 
we made re-interpretations and re-calculations of the 
corresponding direct space lattice parameters and the 
derived unit cell areas. The latter was particularly easy 
as we only needed to count the number of reciprocal lat-
tice nodes that correspond to one CrysTBox determined 
reciprocal unit cell and multiply the derived direct space 
unit cell areas with the corresponding factor.

For images #1 to #3, there are four extra reciprocal 
lattice nodes that are completely included within the 
four lattice nodes that outline one reciprocal unit cell 
that CrysTBox has assigned. This means the four extra 
reciprocal lattice nodes count full because they are com-
pletely included within the algorithm assigned recip-
rocal unit cell. The four reciprocal lattice nodes that 
outline the assigned reciprocal unit cell itself count, on 
the other hand, just for one quarter of a full node each, 
because they are each shared with three other reciprocal 
unit cells. Four times one quarter plus 4 sums to 5 as the 
factor by which the direct space unit cell areas of these 
images as listed in Table 5, have been underestimated by 
the implemented CrysTBox assignment routines.

11  This can be a very useful feature when there is more than one reciprocal 
lattice in the amplitude map of the discrete Fourier transform of an image. 
This kind of a situation would arise when an image contains information 
from more than one crystal. If one of two crystals occupied a much larger 
area in the image than the other crystal, e.g. there was some small crystal-
line inclusion in a crystalline matrix, there would indeed be two sets of Fou-
rier coefficients with significantly different intensities in the amplitude map 
of the discrete Fourier transform of that image.
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The corresponding entries for these three images as 
extracted by the CrysTBox program in Table  5 need, 
therefore to be multiplied by five in order to be listed in 
Table 6. In other words, the four nodes that outline the 
assigned reciprocal lattice unit cells in the amplitude 
maps of the dFT of these images account for a five times 
smaller unit cell in direct space.

Analogously for the other images for which there are 
red ink entries in Tables 3 and 5 for the CrysTBox pro-
gram, the derived unit cell area for image #6 is to be dou-
bled and for images #7 to #9 are to be tripled for listings 
in Table  6. The re-calculation of the direct space lattice 
parameters on the basis of the amplitude maps of the 
dFTs (as obtained with CrysTBox) of images #6 to #9 is 
also straightforward.

In the case of image #6, there is one extra reciprocal 
lattice node completely included within the reciprocal 
lattice cell that the CrysTBox algorithm assigned and this 
node is located parallel to the a* axis. The direct space 
lattice vector magnitude along the a axis is, therefore, to 
be doubled so that the listed b/a ratio for this image in 
Table 3 is to be cut in half for a listing of the correspond-
ing entry in Table 4.

For images #7 to #9, there are two extra reciprocal lat-
tice nodes completely included within the reciprocal lat-
tice cells that the CrysTBox algorithmic implementation 
came up with and they are both located parallel to the a* 
axis. The entries for the b/a ratios of these three images 
in Table 3 are, therefore, to be reduced to one third each 
for listings of the corresponding entries in Table 4.

For images #1 to #3 there is per design no crystal-
lographic convention for the origin of the unit cells (as 
mentioned above). There are, therefore, no unique sets of 
direct space lattice vectors so that there are consequently 
no unique b/a ratios for the entries for these three images 
for the CrysTBox program in Table 4.

Probably due to the motif-based pseudo-symmetry 
of the first kind that apparently “fixes” the origin to the 
positions of the pseudo-twofold rotation points in these 
three images, both the PUCE and the CRISP program 
extracted lattice parameters in good agreement with 
each other as listed in Table 3. This resulted also in good 
agreements between the direct space unit cell area list-
ings for both programs in Table 5.

As anticipated above in the “Overview I: synthetic test 
image sets” section, a motif-based pseudo-symmetry of 
the first kind that apparently does not change the Bravais 
lattice type does not present a challenge to lattice param-
eter extraction programs. The combination of motif-
based and translational pseudo-symmetries of the first 
kind in images #7 to #9, on the other hand, which appar-
ently does change the Bravais lattice type resulted for 

both the CrysTBox and the CRISP programs in entries 
marked in red ink in Tables 3 and 5.

For image #8, a lattice of the rectangular (primitive) 
reciprocal Bravais lattice type was clearly visible in the 
amplitude map of the dFT of the image when processed 
with CRISP. This program would however in its (default) 
automatic reciprocal lattice assignment setting ignore the 
first two weak peaks in the amplitude map of the dFT of 
image #8 and extract parameters of a pseudo-square Bra-
vais lattice instead regardless of whether or not the maxi-
mal circular or square area of the image was selected for 
the processing, see corresponding entries in Tables 3, 4.

When the reciprocal basis vector assignment was, on 
the other hand, made in the alternative manual setting, 
rectangular vectors of uneven magnitudes were handed 
over to the rest of the algorithms of the CRISP program 
so that qualitatively correct results were obtained, see 
Table  4. The consequences of the two different modes 
of reciprocal basis vector assignments of the CRISP 
program for the derived unit cell areas of image #8 are 
shown by the corresponding entries in Tables 5, 6. While 
the particulars of the entries in Tables  3 and 5 for this 
image are analogous to those that were derived with 
the CrysTBox program, it was the option in the CRISP 
program that allowed for manual reciprocal basis vector 
assignment that made all the difference to arrive at quali-
tative correct results as listed in Tables 4 and 6.

For the noisiest image of this test image set, image #9, 
the first two weak peaks in the dFT amplitude map of the 
CRISP program were almost indiscernible to us due to 
the very noisy background although one could still make 
them out if one “knew” that they must be present. The 
results for this image are, therefore, analogous to that of 
image #8 as we also utilized the alternative (non-default) 
manual reciprocal lattice assignment feature of the 
CRISP program in order to compile the entries for image 
#9 in Tables 4 and 6.

It is remarkable that the noise-free image of this test 
set, image #7, follows the same pattern in as far as the 
CRISP program in its default setting is concerned, see 
Tables 3 and 5. While a human being is visually capable 
to discern the underlying rectangular (primitive) Bra-
vais lattice type that this image possesses per design, 
the combination of motif-based pseudo-symmetry and 
translational pseudo-symmetry of the first kind seems 
to be strong enough to “fool” both the CrysTBox and 
the CRISP program in their default settings. In the non-
default setting of the CRISP program which involves the 
selection of the maximal circular area for further image 
processing, the automatic (default) reciprocal basis vec-
tor assignment function sufficed to arrive at qualitative 
correct results for image #7, see Tables 4 and 6.
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The extraction results from the images that possess 
per design the rectangular centered Bravais lattice, i.e., 
#10 to #12, require a separate discussion as they pos-
sess either a metric specialization or extreme cases of 
translational pseudo-symmetry of the special kind. The 
“detached lattice symmetry” (see footnote 3) or very pro-
nounced pseudo-symmetry (of the special kind) was easy 
to detect in the amplitude map of the dFT as provided 
by the CrysTBox and CRISP programs. For a thorough 
elucidation of different types of pseudo-symmetries, one 
needs to determine the most likely Laue classes and plane 
symmetries of the test image set in addition [18]. We will 
report on this elsewhere.

While the lattice parameters needed to be re-calculated 
from the outputs of the CrysTBox program for images 
#10 to #12, the CRISP program possesses (as already 
mentioned above) an alternative setting to test for the 
existence of a rectangular centered Bravais lattice type 
whenever the ratio of the magnitudes of the shortest 
reciprocal lattice vectors is approximately unity. We uti-
lized this feature under both the default and non-default 
settings of the CRISP program to arrive at qualitatively 
correct results in both cases, see Tables 3, 4, 5 and 6.

We re-calculated the entries for the rectangular cen-
tered Bravais lattices for listings as entries for images #10 
to #12 for the CrysTBox program in Tables 4 and 6 from 
the extracted primitive sublattice parameter sets as listed 
in Table  3. The sets of lattice parameters and derived 
unit cell areas of these three images were, after the re-
interpretation, in good agreement with those that were 
obtained with the CRISP program by the more direct 
route.

We have to note in passing that the results of the PUCE 
program depended sensitively on image format conver-
sion processes that were performed prior to the lattice 
parameter extractions. Some of the utilized image for-
mat conversion programs changed the nature of the noise 
inadvertently so that it was no longer Gaussian.

Surely, any image format conversion software should 
not do this kind of thing because it is equivalent to the 
inadvertent introduction of systematic errors into the 
synthetic test images. The results of both the CrysTBox 
and the CRISP program are, on the other hand, quite 
insensitive to image format conversions that were done to 
their inputs for all of the cases we studied in this review. 
This is probably due to the built-in “noise-filtering fea-
ture” of lattice parameter extraction algorithms that work 
in reciprocal space.

Note finally that the results from the moderately noisy 
image #5 are within reasonable error bars in qualitative 
agreement across all three programs/algorithms in their 
default settings, see Tables  3 and 5. A re-interpretation 
and re-calculation of the result of CrysTBox was not 

indicated by the amplitude map of the dFT of this image. 
The results of the CRISP program are actually identical 
in its default and non-default settings for image #5. The 
combination of these three features makes image #5 
apparently the one from which it was easiest to extract 
qualitatively correct lattice parameters. The large number 
of unit cell repeats in this image probably played a role in 
this, in spite of the added noise. Based on the results of 
the CRISP program in its default setting for image #4 in 
Table 3, we must conclude that it was actually the noise-
free image of the corresponding set that proved to be 
more challenging to the tested lattice parameter extrac-
tion algorithms in their default settings.

For image #5, one would be justified to average the 
lattice parameter extraction results and what has been 
derived from them over the three different algorithms 
and to obtain a higher accuracy and precision. Indeed the 
average b/a ratio for this image is 0.601 ± 0.011, the aver-
age lattice angle is 89.93° ±  0.08°, and the average unit 
cell area is 373.3 ± 1.0 square pixels as obtained from the 
combination of the results of the three programs in their 
default settings. For comparison, the design parameters 
for image #5 are: b/a ratio = 0.60, lattice angle = 90.0°, 
and unit cell area =  375 square pixels. The agreements 
between the averaged extraction results and the design 
parameters are for this particular image pretty good, but 
our initial error estimates that took the outputs of the 
CRISP program as significant numbers were, as Tables 3 
and 5 clearly reveal, too optimistic.

As a matter of fact, the initial error estimates were 
throughout the whole review far too optimistic. Ten 
to twenty times larger error estimates than the initially 
assumed significant number outputs of the CRISP pro-
gram are obviously more realistic given the totality of the 
results discussed in this section. Typically extracted lat-
tice parameter magnitudes are, therefore, at least for the 
kinds of noisy images that are shown in Fig. 2 only accu-
rate within approximately 2% and extracted lattice angles 
only accurate within approximately 1°.

Summary and conclusions
Three different algorithms (as implemented in three 
different computer programs) were put to the task of 
extracting lattice parameters from four sets of synthetic 
test images that were 2D periodic per design but also 
contained images that were noisy so that all site and 
translation symmetries were broken. While one of the 
images in each of these sets was free of noise (and also 
free of systematic errors so that it was perfectly 2D peri-
odic), independent Gaussian noise of mean zero and 
a standard deviation of 10 or 50% of the maximal pixel 
intensity was added to the individual pixels of that image 
in order to create two noisy images for each set of test 
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images. While the added noise obscures the translation 
and site symmetries in these images, it obviously cannot 
change them in a systematic way. The presence of noise 
is supposed to present a greater challenge for any com-
puter program to extract accurate lattice parameters with 
a high precision.

Our sets of calculated test images can be considered to 
be equivalent to images that were detected with different 
signal-to-noise ratios by an instrument that is free of sys-
tematic imaging errors. The signal in the images of one 
test set is then a combination of individual pixel inten-
sities that obey designed restrictions that are set by the 
combination of the chosen plane symmetry group, i.e., a 
combination of translation and site symmetries, with the 
metric properties of the unit cell.

A (non-existing) ideal algorithm for the extraction of 
lattice parameter information applied to any one of these 
test images would have quantified the magnitudes of the 
two basis lattice vectors and the angle between these 
vectors accurately to the values that were put into the 
images’ designs. The translation symmetry/Bravais lattice 
type that is to be inferred from these parameters would 
also be the one that was put into the images’ designs.

Moreover, an ideal algorithm would not have intro-
duced systematic errors into the geometric extraction 
results and delivered the same results for the three indi-
vidual images of each test set. An increase of the error 
estimates on the lattice parameters would be expected 
with an increasing amount of noise in the images as the 
ideal algorithm would propagate random errors faith-
fully. This kind of an ideal algorithm could be considered 
as the (non-existing) definitive algorithm for the extrac-
tion of geometric-structural features from noisy images 
for the task at hand.

A minor complication arose in our review by the fact 
that none of the three tested programs provides explicit 
statements on error bars. We were, therefore, initially 
forced to take the numerical outputs of the computer 
program that provides the fewest number of digits for the 
extracted lattice parameters as significant numbers. This 
was the CRISP program, which had also the best over-
all test performance. The resulting error estimates were 
then also used for the outputs of the other program that 
extract lattice parameters in reciprocal space (i.e., CrysT-
Box). The error bars on the unit cell areas and other 
derived results were for these two programs obtained 
by standard error propagation calculations. As a result 
of this review, we have to conclude that our initial error 
estimates were way too optimistic by a factor of ten to 
twenty for the noisy images at least.

For the program that allows for lattice parameter 
extractions in direct space (i.e., PUCE), we made a rea-
sonable assumption for the precision with which the 

Cartesian coordinates of the start and end points of lat-
tice vectors could be extracted from the images. For 
quantities that were derived from the extracted coordi-
nates, e.g., the ratio of the magnitudes of the lattice vec-
tors, the lattice angle, and the area of the unit cell, the 
error estimates of the coordinates were propagated to the 
derived end results.

Contrary to our expectations, the sets of lattice param-
eters that the three programs extracted in their default 
settings from the same image disagreed in the vast major-
ity of cases within both the originally anticipated and 
more reasonable error estimates. On the one hand, this 
fact reflects positively on the nature of the test images 
in the sense that they present tough challenges to lattice 
parameter extraction algorithms because many of them 
possess pseudo-symmetries of the first or special kind 
per design. This fact, however, also reflects somewhat 
negatively on the tested computer programs/algorithms 
because most researchers (including the programmers) 
would probably expect them to perform much better for 
the tasks at hand.

The main thrust of this paper was, however, not at all 
a ranking of the relative performance of the three tested 
programs. The test performances of the corresponding 
three different algorithm implementations are supposed 
to serve collectively as an illustration of the fact that there 
is simply no definitive extraction algorithm for geomet-
ric-structural features in all real-world applications. Nev-
ertheless, a very brief summary of the test performances 
of the three computer programs is in order in this final 
section of this review.

Of the three tested programs, the one that has been 
around for more than a quarter of a century as a windows 
executable, i.e., CRISP, performed best. The CRISP pro-
gram is also the only one of the three tested programs 
that allows for a direct route to the extraction of the 
parameters of rectangular centered Bravais lattices. Plane 
symmetries and Laue classes of more or less 2D-periodic 
images can also be determined with this program (in a 
somewhat subjective manner) so that it is the only one of 
the three tested programs that offers a systematic route 
towards elucidating pseudo-symmetries of the first and 
special kind.

The application of the CRISP program in non-default 
settings resulted in extracted lattice parameters that were 
entirely consistent with the designs for all test images. 
This could be due to both its classical 2D-crystallography 
approach12 and the noise-filtering function of the Fourier 
transform.

12  Note that this approach resulted in the award of the 1982 Chemistry 
Nobel prize to Sir Aaron Klug "for his development of crystallographic elec-
tron microscopy and his structural elucidation of biologically important 
nucleic acid–protein complexes".
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Naturally, lattice parameter extraction from noisy 
images is more difficult in direct space so that the PUCE 
program is at a disadvantage in this task in comparison 
to the other two programs. For three of the four noise-
free images, the PUCE program extracted lattice param-
eters in very good agreement with the results from the 
CRISP program and the a priori known Bravais lattice 
types. In the fourth case, where there was a rectangular 
centered Bravais lattice type per design, the PUCE pro-
gram extracted the parameters of its primitive sublattice 
(because it is designed to extract primitive lattice param-
eters only).

The lattice parameters that the CrysTBox program 
extracted in its default setting had to be re-interpreted/
re-calculated in 10 out of 12 cases. The reason for this 
was in seven cases the implemented strategy of this pro-
gram to assign a highly precise reciprocal lattice in recip-
rocal space that does not need to outline the smallest 
reciprocal lattice unit cell. This meant ignoring the short-
est reciprocal lattice vectors when they had small ampli-
tudes in the corresponding map of the dFTs of these 
images. After re-interpretation/re-calculation, all results 
from the CrysTBox were qualitatively correct. Also the 
CrysTBox program is optimized for work with electron 
diffraction patterns rather than more or less 2D-periodic 
images. This program possesses, in addition, many non-
default settings that we did not test as part of this review.

For the detection of pseudo-symmetries of the first 
and special kind, the user benefits greatly when a com-
puter program displays the amplitude map of the discrete 
Fourier transform of a more or less 2D-periodic image. 
This is because the dFT amplitude map displays the Laue 
class that corresponds to the underlying plane symmetry 
group. When there is no pseudo-symmetry of the first or 
special kind (and there is no metric specialization), there 
is also no obvious mismatch between (or detachment of ) 
the visible point symmetry around the center of this map 
and the translation symmetry that is governed by the 
metrical properties of the extracted lattice parameters. 
While the CRISP and CrysTBox programs both possess 
such a feature, it is absent in the PUCE program as the 
latter works in direct space exclusively.

For dealing with pseudo-symmetries of all kinds, it is 
also helpful when a computer program allows the user 
to overwrite an automatic (default) assignment of the 
reciprocal basis vectors in the amplitude map of a dFT 
of a more or less 2D-periodic image. The CRISP program 
possesses this feature as well. The only negative thing that 
could be said about this program is that, typically, error 
bars on the extracted unit cell angles are at least one 
order of magnitude larger than one would expect based 
on the assumption that the CRISP program output are 

significant numbers. (The other two programs provide 
even more non-significant numbers as outputs).

We conclude finally that our testing of the lattice 
parameter extraction capabilities of three different algo-
rithms (as implemented in three different computer pro-
grams) was useful because not all readers might have 
been aware that there are simply no definitive algorithms/
computer programs for the extraction of geometric-
structural features from detected images. As there is 
much more hierarchical geometric-structural informa-
tion beyond Bravais lattice types that could be extracted 
from noisy images (and utilized, for example, for auto-
mated crystal phase and grain boundary symmetry type 
classifications), we hope to have brought the implications 
of Kanatani’s no definitive geometric feature extraction 
algorithm/results in all real-world applications dictum 
and his comments on the vast majority of computerized 
attempts to extract symmetries and other hierarchical 
geometric features from noisy images to the attention of 
the wider scientific community. This will hopefully lead 
to a more thoughtful “use of established procedures in 
widely distributed software” and a disengagement from 
“the natural tendency of most people to prefer results in 
agreement with preconceived ideas” as encouraged by the 
Committee on Statistical Descriptors of the International 
Union of Crystallography.

There are many more geometric-structural feature 
extraction programs to be written and thoroughly bench-
marked with respect to each other on sophisticated test 
image sets in order to make progress collectively as a 
community towards the shared goals of model-based 
imaging, materials informatics, and the knowledge-
based designs of new materials. Kanatani’s geometric 
AICs could become very useful in the pursuit of these 
overarching goals because they provide model param-
eter spaces of comparatively small dimensionalities, 
noise-level dependent rankings that are free of arbitrar-
ily set thresholds, and are applicable whenever very small 
systematic imaging errors are negligible with respect 
to small random imaging errors with an approximately 
Gaussian distribution. Note that in the case of nested 
models, the noise level of an image does not even need to 
be estimated when one wants to find out which crystal-
lographic model minimizes the unavoidable information 
loss (that is associated with the model’s usage as repre-
sentation of the image data).

We also hope to have achieved the secondary goal of 
this paper so that misconceptions surrounding Bravais 
lattices in 2D and plane symmetry groups that existed 
in the wider scientific community are now cleared up. 
Addressing these shall hopefully foster the widespread 
application of G-AICs by microscopists, computer scien-
tists, and applied crystallographers in the future.
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