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Abstract 

We develop an algorithm for feature extraction based on structural similarity and demonstrate its application for atom 
and pattern finding in high-resolution electron and scanning probe microscopy images. The use of the combined 
local identifiers formed from an image subset and appended Fourier, or other transform, allows tuning selectivity to 
specific patterns based on the nature of the recognition task. The proposed algorithm is implemented in Pycroscopy, 
a community-driven scientific data analysis package, and is accessible through an interactive Jupyter notebook avail-
able on GitHub.
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Background
Recent advances in (scanning) transmission electron 
microscopy (STEM) and scanning probe microscopy 
(SPM) made atomically resolved imaging of solids and 
surfaces routine [1–5]. STEM enables the visualization of 
the atomic structure in a broad range of materials from 
oxides to semiconductors and metals, and in many cases 
allows observation of the evolution of structure under 
reactive conditions or thermal stimulations [6–11]. Simi-
larly, ultra-high vacuum (UHV) and liquid SPM modes 
were used to resolve atomic structures of metal and semi-
conductors, ad atom structures, etc. [12–16].

Both for (S)TEM and SPM, of interest is the funda-
mental analysis of materials physics and chemistry from 
imaging data. Indeed, until recently atomically resolved 
images were used solely to establish the local structure 
of materials and make qualitative observations on its 

quality, the presence of specific defects, etc. The pro-
gress in spatial resolution and related information limit 
enabled quantitative description of images, where (for 
STEM) atomic coordinates for some (or all) constitutive 
atoms can be extracted with picometer precision. Once 
available, this information can be used to reconstruct 
physical order parameter fields such as polarization [17–
20], octahedral tilts [21–23], or chemical expansion [24]. 
Alternatively, local atomic configurations can be analyzed 
in an unbiased manner via statistical methods, providing 
information on local crystallography [25, 26]. Moreo-
ver, crystallographic information can be extracted from 
the shape of the atomic column [22, 27]. Parenthetically, 
the extraction of physical information from atomically 
resolved imaging data, along with 3D imaging, provides 
the primary stimulus for development of progressive 
high-resolution STEM platforms [1]. Similar approaches 
can be applied to scanning probe microscopy data [25, 
28], albeit in this case the origin of the contrast is more 
complex.
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These applications necessitate the development of 
robust and reliable techniques to extract atomic coordi-
nates from atomically resolved images, requiring little or 
no human supervision. These generally require a combi-
nation of feature extraction methods with physics-based 
deconvolution. For STEM data, especially annular dark 
or bright field images, the analysis can be significantly 
simplified under the assumptions that the regions with 
maximum contrast correspond to atomic coordinates. 
For more complex cases, the target is the development 
of feature classification and feature extraction schemes. 
Here, we develop an approach based on sliding window 
decomposition and similarity search that enables fast 
and robust analysis of images with multiple periodic tex-
tures and can be used for denoising, feature extraction, 

and segmentation of data. We further note that in certain 
cases, the proposed algorithm leads to physically signifi-
cant decompositions—however, we defer these studies 
to follow-on work focused on specific studies of imaging 
phenomena.

Methodology
Figure  1a–c shows the fundamentals of the proposed 
approach, including denoising, feature-based clustering, 
and similarity search. The proposed algorithm leverages 
the fact that noise within different sections of the image 
is typically uncorrelated. Thus, images can be denoised 
by only retaining strongly correlated information and 
removing poorly correlated or uncorrelated information. 
To compare each section of an N × N pixel image with 

Fig. 1  Schematic illustrating the fundamentals of the singular value decomposition (SVD)-based image denoising technique and the pattern 
matching-based techniques for identifying atoms in images. a The denoising process starts with sliding a small window across the given image 
column-by-column and then row-by-row. b A stack of (N − m)2 windows, each with m × m pixels, is built by copying the contents of the window 
at each location. c This 3D stack of windows is flattened to a 2D matrix by flattening the m × m pixel windows to 1D arrays with m2 elements. SVD 
is performed on this 2D matrix to decompose the data into the most correlated and least uncorrelated (noise) components. The image is denoised 
by reconstructing the 2D matrix in c with only the most correlated SVD components and reversing the steps from c to a. d K-means clustering on 
the SVD results groups pixels exhibiting similar trends together in a cluster label map. Representative examples of repeating patterns or motifs in 
the label map are selected for pattern matching. e Each motif is compared to every section in the label map to generate a pattern matching scores’ 
map. Each continuous-valued scores map is thresholded to generate binary maps with segments and the centroids of these segments provide the 
coordinates of the repeating patterns such as atoms
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every other section of the image, we use an m × m pixel 
frame or window where N is much larger than m. For 
atomically resolved images, an optimal value for m can 
be calculated using information about the periodicity of 
the lattice [29]. See Figures S1 and S2 in Additional file 1 
for examples of the original N × N pixel image and a cor-
responding m × m pixel window. The generated m × m 
pixel frame is slid across the original image column-by-
image column and then image row-by-image row. At 
each position, the m × m pixels within the frame are cop-
ied to construct a stack of (N − m)2 windows each with 
m × m pixels.

As a second step, each window in the stack is flattened 
from an m × m two-dimensional matrix to a one-dimen-
sional array containing m2 elements. When it is desired 
to emphasize subtle changes in the atomic periodicity in 
certain atomically resolved images, additional informa-
tion, such as the magnitude of the fast Fourier transform 
of the window, can be appended to the window. This 
combination of real-space window and corresponding 
FFT with certain weighting factor allows one to balance 
relative weight of real- and reciprocal space features and 
greatly improves flexibility of the analysis. We further 
note that for different preponderant textures, other image 
transforms can be used, e.g., Radon transform for analy-
sis of the linear domain structures. Overall, this opera-
tion transforms the three-dimensional stack of windows 
into a large two-dimensional matrix [(N − m)2 windows, 
each with m2 pixels].

Subsequently, we apply singular value decomposition 
(SVD) to identify the most and least correlated trends 
in the windows. Briefly, SVD breaks up a dataset into 
orthogonal components arranged in decreasing order of 
statistical significance as

where A is the dataset of interest containing p windows 
with q pixels, V describes the r most significant compo-
nents, each containing q pixels. U describes the abun-
dance of these r components in the p windows and S 
the variance or statistical importance of each of the r 
components.

Consequently, the first few SVD components con-
tain the most important correlations while the last few 
components contain the least correlated information 
and are typically considered to be noise. Figures S3–S5 
in Additional file  1 show results from SVD applied to a 
windowed dataset. The original dataset, A, can be recon-
structed exactly from the above equation or partially 
by using a subset of the r components. Thus, the 2D 
(N − m)2 × m2 dataset can be reconstructed using only 
the most informationally significant components from 

(1)Apq = UprSrV
T
qr ,

SVD. Subsequently, the windowing process shown in 
Fig. 1a–c can be used in reverse to generate the filtered 
image. Figure S6 in Additional file  1 shows the recon-
struction of an image using the first few SVD compo-
nents. Though the windowing process is shown for a 
square N × N pixel image, the same procedure can be 
used on rectangular images as well.

The results from SVD are further used to identify atoms 
or atomic columns via a pattern matching approach out-
lined in Fig.  1d–e. We begin the atom finding process 
by performing k-means clustering on U or a subset of 
U. k-Means clustering classifies data points into k clus-
ters by Euclidean distance such that the variance within 
each cluster is minimized. In other words, k-means 
groups data points or pixels such that pixels within the 
same cluster are more similar to each other than those in 
other clusters. Applying k-means to U results in a (spa-
tial) map of labels where the value at each pixel is the 
index of the cluster that the pixel belongs to k-means can 
also be applied to a subset of U to discount SVD compo-
nents whose eigenvectors do not exhibit regular patterns. 
These components often contain information regard-
ing long-range features (e.g., −  drift), instrument noise 
(e.g., − 60 Hz noise), etc. Such manual selection of com-
ponents in U can better enable k-means to capture the 
desired features. k-means requires k to be specified a pri-
ori and it is a challenge to determine an appropriate value 
of k that best represents the data. Hence, we ‘over-cluster’ 
the dataset, or choose a large value for k (e.g., –  24 to 
60) to allow k-means to capture the finer nuances in the 
image, such as phase boundaries, in the original image.

Next, we manually select t square or rectangular win-
dows in the denoised image that are centered on repeat-
ing patterns, such as atoms or atomic columns. Separate 
motifs are selected to represent each of the families of 
atoms or atomic columns. The coordinates of these win-
dows are used to extract a corresponding set of t motifs 
from the spatial map of cluster labels obtained from 
k-means. The spatial abundance of each motif is cal-
culated by scanning the motif across the spatial map of 
cluster labels, image column by image column and then 
image row by image row. For a given motif at a given 
location on the cluster label map, the ‘matching score’ is 
calculated as the number of pixels in the motif that match 
with the current window in the cluster label map. This 
matching score is divided by the number of pixels in the 
motif such that the score always ranges from 0 to 1. In 
the event that two motifs identify the same set of atoms, 
one of the motifs is removed. Additional motifs may be 
required to identify those atoms that are not captured by 
the original set of motifs. One example is the case where 
drift in the microscope results in distortions in the shapes 
of atoms in certain sections of the image.
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This matching process results in t spatial maps of 
matching scores corresponding to each of the t motifs. 
These continuous-valued spatial maps of matching scores 
are manually thresholded to generate t binary maps 
where the score is set to 1 if the matching score is greater 
than the threshold and 0 otherwise. The threshold val-
ues for each pattern are manually chosen such that the 
number of matched areas is maximized while minimiz-
ing any overlap with segments from other patterns. For 
atomically resolved images, the coordinates of atoms 
can be estimated by calculating the centroid of each seg-
ment from the thresholded maps. When the same atom 
is identified for multiple motifs, supervised machine 
learning techniques such as K-nearest neighbors are used 
to remove duplicates and assign the atom to the correct 
motif. Subsequently, a variety of approaches can be used 
to refine the positions of the atoms for further analysis as 
necessary [23, 25, 28].

Results
The selection of the appropriate number of components 
to reconstruct the image plays a very important role in 
the denoising process. Figure 2 shows the denoising pro-
cess applied to an atomically resolved image obtained 
from a scanning transmission electron microscope 
(STEM). The image shows a clear lattice structure with 
some bright and some dim spots signifying atomic col-
umns. As is the case in most annular dark-field STEM 
images, certain columns of atoms result in a signal that 
is often comparable to or below the noise floor, which 
makes it very challenging to identify these atomic col-
umns. After applying the windowing algorithm, we 
applied SVD to the windowed dataset and reconstructed 
images with varying number of SVD components. Fig-
ure 2h shows that variance, or statistical significance, of 
components decreases exponentially with the number 
of components. In fact, the first 32 of the 180,625 com-
ponents contain nearly all the statistically and physically 
relevant information. Reconstructing the dataset with 
only the first eight components resulted in an image with 
minimal noise. Though the dominant lattice structure is 
certainly visible in the cleaned image in Fig.  2i, l shows 
that finer shifts in the atomic positions are lost. The fast 
Fourier transform (FFT) of these images shows that the 
cleaned image only captures the signal from a few lower 
order peaks while information from several higher order 
peaks are lost. When reconstructing the dataset with the 
first 700 components, we see that the cleaned image is 
comparable to the original image since only a few com-
ponents were removed during the reconstruction. Con-
sequently, Fig.  2k shows that minimal information was 
discarded and the vast majority of information in the 
frequency space is retained in Fig. 2g. Reconstructing the 

dataset with only the first 32 components resulted in an 
image that retains the general lattice structure and the 
finer shifts in the atomic columns while discarding only 
the noise as seen in Fig. 2c, j. We reiterate that the image 
can be reconstructed using any subset of components 
(for example—components 2,5,8,9,15….) and not only 
using the first few components. Thus, it is critical that 
the appropriate components be chosen to reconstruct the 
images.

Figure  3 shows this windowing and SVD-based filter-
ing methodology applied to four atomically resolved 
images obtained from STEM and scanning tunneling 
microscopes (STMs). The sample description is provided 
in “Methods” section. In all cases, the original images 
show significant amount of noise that makes it challeng-
ing to identify certain atoms or columns. SVD on the 
windowed datasets resulted in components whose vari-
ance decreased exponentially with increasing number of 
components as seen in the variance plots. The denoised 
images were generated by reconstructing the win-
dowed datasets using only the first 24–32 components 
from the complete 500–2000 components. In all cases, 
the denoised image clearly reveals the atomic columns 
regardless of the intensity of the signal. The removed sig-
nal mainly contains the uncorrelated noise in the original 
image. The denoised images are neither missing atoms 
nor do they have additional atoms that were not present 
in the original image. As this figure shows, our denois-
ing approach works for images with different numbers 
of atoms, images with defects, images with shifts in the 
atomic periodicity caused by phase boundaries or grain 
boundaries (Fig. 3a, e, i), and images of surfaces with con-
taminants (Fig. 3m).

Following the denoising, the results from SVD on the 
windowed dataset can also be used to identify atoms via 
the pattern matching approach described above. The first 
and most challenging step in this process is configuring 
k-means clustering such that it effectively identifies sub-
tle trends such as phase boundaries, domain walls, grain 
boundaries, dislocations, or cracks and segregates the 
dataset accordingly. Figure  4 shows results of k-means 
clustering applied to the U dataset obtained from SVD 
on the windowed dataset. Components containing long-
range features and changes in background intensities 
were discarded in most cases for effective identification 
of subtle features. For the images in Fig. 4a, b, the abso-
lute value of the FFT of the windows was appended to 
the windows to emphasize subtle changes in the perio-
dicity in the image. These careful considerations enabled 
k-means to differentiate phase regions in the left and 
right side of Fig. 4a that are invisible to the human eye. 
Correspondingly, the cluster label map in Fig.  4i shows 
different patterns on the left and right separated by a 
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red section in the center. Similarly, k-means was able to 
clearly identify the antiphase boundary in Fig. 4b as seen 
by the broad blue “crack” dividing the top and bottom of 
Fig. 4j. k-Means also clearly identified the grain boundary 
in Fig. 4c and the defects/impurities in Fig. 4d.

Following successful clustering, this pattern match-
ing technique can be applied to identify and differentiate 
atoms as shown in Fig. 5. The denoised image in Fig. 5a 
was reconstructed by carefully choosing a subset of the 
first 28 SVD components. k-Means clustering was per-
formed on the same set of components to provide the 

map of cluster labels shown in Fig. 5b. Four motifs, cen-
tered on the two different classes of atomic columns, 
were manually chosen from the cluster label map, demar-
cated by the black squares in Fig.  5b and also shown in 
Fig.  5c. Figure  5d shows the overlay of the normalized 
matching scores for each of the four motifs and the atoms 
identified by different motifs are differentiated by color. 
We observed minimal overlap or mis-identification of the 
atoms at this stage and only 4 of the 300+ atoms were not 
identified due to artifacts in the center of the k-means 
cluster map. Independently thresholding the pattern 

Fig. 2  Choosing the appropriate number of SVD components to effectively denoise images. a Original atomically resolved image. Denoised images 
obtained by reconstruction using b 12, c 30, and d 256 SVD components. Magnitudes of the 2D FFTs of images reconstructed using e 12, f 30, and 
g 256 SVD components. h Variance of the SVD components showing the cut-offs for (red) 12, (green) 30, and (cyan) 256 SVD components as vertical 
lines. Removed noise, calculated as the difference between the original and denoised images, when reconstructing images using i 12, j 30, and k 
256 SVD components. Magnitudes of the 2D FFTs of the removed noise when reconstructing images using l 12, m 30, and n 256 SVD components
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matching scores maps resulted in binary maps shown in 
Fig. 5e. The coordinates of the atoms were calculated via 
the centroid of each segment in Fig. 5e.

Discussion
The microscopy community has developed and used a 
variety of techniques for denoising images and finding 
the positions of atoms and atomic columns in images 
since the inception of the SPMs and STEMs [30]. Among 
the many techniques for denoising atomically resolved 

images, Gaussian blurring, filtering in the Fourier space, 
averaging over multiple unit cells, and averaging over a 
stack of images are some of the most commonly used 
methods. Most of these techniques are fast and simple 
but have major shortcomings. For example, filtering in 
the Fourier space is prone to adding additional atoms at 
vacancies, removing displacements in atomic positions, 
etc. Furthermore, it is challenging to further fine-tune the 
filter since the frequencies with significant information 
vary from image to image and are not known a priori. 

Fig. 3  Image windowing and SVD-based denoising algorithm applied to four atomically resolved images. a, e, i, m Original images showing vary-
ing levels of noise, number of atoms, and presence of contaminants. b, f, j, n Variance of the SVD components and the number of components 
used to reconstruct images shown by the red line. c, g, k, o Denoised images obtained by reconstructing using a subset of the SVD components. d, 
h, l, p Noise removed from images, calculated as the difference between the original and denoised images



Page 7 of 10Somnath et al. Adv Struct Chem Imag  (2018) 4:3 

Cross-correlation and phase-correlation methods typi-
cally require a stack of multiple images and cannot work 
on a single image like our technique. The current state-
of-art technique for image denoising is a non-local means 
(NLM) [31] technique called block-matching and 3D fil-
tering (BM3D) [32], which identifies windows or patches 
that are similar, performs 3D wavelet denoising on simi-
lar patches and finally applies a Wiener filter. BM3D also 
shares the same shortcomings as frequency space filter-
ing. Additional file  1: Figure S7–S10 shows the results 
from popular image filtering techniques. Additional 
file  1: Figure S11 compares the best results from five 
image denoising techniques. We observe that our tech-
nique is substantially better than all other techniques, 
including BM3D, at effectively removing the majority of 
the noise while retaining all the important information 
regarding the lattice structure. All other techniques only 
remove the short-range features or high-frequency com-
ponents while the noise at low-frequency components 
still remains in the image. Furthermore, all the other 
techniques tend to erase atoms with relatively low inten-
sities easily as the strength of the filter is increased.

We also compared our atom finding technique with 
other conventional alternatives. Similar to the image 
denoising alternatives, the atom finding techniques also 

have their own advantages and limitations. For example, 
though Gaussian convolution is fast and simple, it is una-
ble to differentiate regions with different lattice structures 
and often deletes atoms with lower intensities along with 
the noise especially in images with low signal-to-noise 
ratio. Window-based convolutions on the other hand 
perform slightly better than Gaussian convolutions at 
identifying atoms with relatively low intensities but at the 
cost of a significant number of false-positives since the 
method is dominated by atoms or atomic columns with 
relatively high intensities. Moreover, similar to Gaussian 
convolution, window-based convolutions are also poor 
at distinguishing regions with different lattice structures. 
We find that our technique is superior to the aforemen-
tioned techniques since it has consistently been able to 
correctly identify all atoms and distinguish regions. See 
Additional file 1: Figure S12 for more information.

Clearly, each denoising and atom finding technique 
has its own merits and disadvantages and a single tech-
nique may not be ideal for every image. For instance, 
while our technique is consistent in denoising and atom 
identification, our (currently) computationally intensive 
algorithm requires modifications to make it suitable for 
real-time denoising of images and identification of atoms. 
We find that the best solution is for such algorithms to be 

Fig. 4  k-Means clustering applied to SVD results to identify trends in the dataset that can be invisible to the human eye. K-means clustering is 
applied to a subset of the U matrix obtained from SVD on the windowed dataset. a–d Images denoised using the windowing and SVD-based 
denoising algorithm. e–h Dendrograms showing the grouping of different clusters. The distance between two clusters is given by the height of the 
horizontal line connecting two clusters. i–l Maps of cluster labels obtained from K-means clustering. These maps show phase boundaries, cracks in 
the crystal structure, grain boundaries, and locations of contaminants in the image
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made available freely via open-source packages to allow 
researchers to adopt the algorithms that suit them the 
best.

Conclusions
We implemented methods for finding atoms and patterns 
in the high-resolution images based on similarity search 
on sliding transforms of images. This approach is univer-
sally applicable to STEM, STM, and AFM data, and can 
be also applied to the other feature- finding problems. 
The use of the identification object comprised image sub-
set and appended Fourier transform allows tuning for 
increased detectability of periodic structures, and can 
be adapted to other characteristic morphologies, e.g., via 
use of Hough transforms.

All the image denoising and atom finding algorithms 
presented in this paper are freely available in our open-
source, community-driven, python package—Pycros-
copy (https://github.com/pycroscopy/pycroscopy). The 

scientific workflow presented in this paper is available via 
a Jupyter notebook (http://nbviewer.jupyter.org/github/
pycroscopy/pycroscopy/blob/master/jupyter_note-
books/Image_Cleaning_Atom_Finding.ipynb) that allows 
straightforward application of the presented methodol-
ogy to arbitrary images.

Methods
The image in Fig. 2 is Li0.33 La0.57 TiO3 described in [30]. 
Image courtesy of Miaofang Chi, Oak Ridge National 
Laboratory.

The image in Fig.  3b is Mo-V-M oxide described in 
[31, 32]. Image courtesy of Albina Borisevich, Oak Ridge 
National Laboratory.

The image in Fig. 3i is a simulated image.
The image in Fig. 3m is WSe2 irradiated with He ions 

acquired via Nion Company UltraSTEM 100 at 100 keV. 
Image Courtesy of Nicholas Cross and Gerd Duscher, 
The University of Tennessee, Knoxville.

Fig. 5  Pattern matching approach for identifying and classifying atoms. a Image denoised using the denoising algorithm presented in this paper. 
b Map of cluster labels obtained from k-means clustering on a subset of the components obtained via SVD on the windowed dataset. Patterns to 
be used for pattern matching are shown by the black squares in b and are expanded in c. d Overlays of pattern matching scores ranging from 0 to 
1 for each pattern. Results for the different motifs are distinguished by color. The color is set to transparent for a matching score of 0 and to the solid 
color corresponding to the motif for a matching score of 1. e Binary maps of pattern matching scores after thresholding to either 0 or 1. f Positions 
of the atoms identified for each motif obtained from the centroids of the segments in e. The d pattern matching scores, e thresholded scores, and f 
atom positions have been superimposed over a black-and-white map of the denoised image shown in a

https://github.com/pycroscopy/pycroscopy
http://nbviewer.jupyter.org/github/pycroscopy/pycroscopy/blob/master/jupyter_notebooks/Image_Cleaning_Atom_Finding.ipynb
http://nbviewer.jupyter.org/github/pycroscopy/pycroscopy/blob/master/jupyter_notebooks/Image_Cleaning_Atom_Finding.ipynb
http://nbviewer.jupyter.org/github/pycroscopy/pycroscopy/blob/master/jupyter_notebooks/Image_Cleaning_Atom_Finding.ipynb
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