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METHODOLOGY

An open‑source software ecosystem 
for the interactive exploration of ultrafast 
electron scattering data
Laurent P. René de Cotret1*, Martin R. Otto1, Mark J. Stern1 and Bradley J. Siwick1,2

Abstract 

This paper details a software ecosystem comprising three free and open-source Python packages for processing 
raw ultrafast electron scattering (UES) data and interactively exploring the processed data. The first package, iris, is 
graphical user-interface program and library for interactive exploration of UES data. Under the hood, iris makes use of 
npstreams, an extensions of numpy to streaming array-processing, for high-throughput parallel data reduction. Finally, 
we present scikit-ued, a library of reusable routines and data structures for analysis of UES data, including specialized 
image processing algorithms, simulation routines, and crystal structure manipulation operations. In this paper, some 
of the features or all three packages are highlighted, such as parallel data reduction, image registration, interactive 
exploration. The packages are fully tested and documented and are released under permissive licenses.
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Background
The advent of ultrafast electron diffraction (UES) has 
extended crystallography into the temporal dimension. 
Combining the spatial resolution of electron microscopy 
and femtosecond time-resolution, this laboratory-scale 
technique has shed light on a broad spectrum of phe-
nomena, from photoinduced structural phase transitions 
in inorganic [21, 32] and organic materials [8], to coher-
ent nuclear motion in dilute molecular gas [36]. Beyond 
probing structure through elastic interactions, UES has 
provided a direct observation of electron–phonon cou-
plings and phonon relaxation pathways in layered materi-
als [26, 31].

Ultrafast electron scattering is a stroboscopic tech-
nique. Electron scattering patterns are acquired a fixed 
time-delay after photoexcitation with an ultrafast laser. 
A full view of the scattering dynamics can be assem-
bled by acquiring electron scattering patterns for suf-
ficient time-delays. To maximize the signal-to-noise 
ratio, equivalent experiments—hereafter referred to as 

scans—are acquired sequentially. This set of equivalent 
sub-experiments forms the raw experimental data. In 
order to extract time-dynamics, the data must be dis-
tilled, or reduced; the data reduction might involve scat-
tering intensity normalization or alignment, and ends in 
averaging. A physical picture of dynamics in a sample is 
built by looking at in scattering intensity over time, in a 
fixed region of reciprocal space. A conceptual view of the 
flow from raw data to dynamics is presented in Fig. 1.

The path from data acquisition to scientific insights can 
never be fully standardized and streamlined. However, 
one step common to all workflows is data exploration. 
This is especially important for time-resolved techniques 
such as UES due to the breadth and depth of information 
contained in a dataset. This emerging field would benefit 
greatly from an aggregation of efforts towards free and 
open-source tools that standardize and simplify analysis 
and interpretation of complex dynamics. In this work, we 
present a program built specifically for interactive data 
exploration, iris. We also introduce a software package 
of reusable routines and data structures related to ultra-
fast electron scattering (scikit-ued) and a streaming array 
operations package (npstreams), establishing a software 

Open Access

*Correspondence:  laurent.renedecotret@mail.mcgill.ca 
1 Department of Physics, McGill University, Montréal, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-018-0060-y&domain=pdf


Page 2 of 11René de Cotret et al. Adv Struct Chem Imag  (2018) 4:11 

Fi
g.

 1
 U

ltr
af

as
t e

le
ct

ro
n 

sc
at

te
rin

g 
da

ta
 e

xp
lo

ra
tio

n 
w

or
kfl

ow
. T

o 
m

ax
im

iz
e 

si
gn

al
s, 

ul
tr

af
as

t e
le

ct
ro

n 
sc

at
te

rin
g 

ex
pe

rim
en

ts
 c

on
si

st
 in

 m
an

y 
id

en
tic

al
 s

ub
-e

xp
er

im
en

ts
 (o

r s
ca

ns
), 

as
 s

ho
w

n 
on

 th
e 

to
p 

rig
ht

. D
at

a 
re

du
ct

io
n 

co
ns

is
ts

 in
 c

om
bi

ni
ng

 th
es

e 
su

b-
ex

pe
rim

en
ts

, w
hi

ch
 u

su
al

ly
 in

vo
lv

e 
im

ag
e-

al
ig

nm
en

t, 
in

te
ns

ity
 n

or
m

al
iz

at
io

n,
 a

nd
 o

th
er

 c
or

re
ct

io
ns

. E
ac

h 
in

di
vi

du
al

 ti
m

e-
de

la
y 

ca
n 

be
 

re
du

ce
d 

in
 p

ar
al

le
l. T

he
 re

su
lti

ng
 re

du
ce

d 
da

ta
 a

re
 a

 s
ta

ck
 o

f s
ca

tt
er

in
g 

pa
tt

er
ns

, s
im

ila
r t

o 
a 

vi
de

o.
 S

ca
tt

er
in

g 
in

te
ns

ity
 ti

m
e-

se
rie

s 
ca

n 
be

 e
xt

ra
ct

ed
 fr

om
 e

ith
er

 a
 s

in
gl

e 
pi

xe
l o

r i
nt

eg
ra

te
d 

ov
er

 a
 

gr
ou

ps
 o

f p
ix

el
s 

(lo
w

er
 ri

gh
t)



Page 3 of 11René de Cotret et al. Adv Struct Chem Imag  (2018) 4:11 

foundation on which the community can build. Iris is the 
first integrated solution for interacting with UES data.

Methods
The software ecosystem presented in this work is writ-
ten in Python; the language is accessible to non-pro-
grammers, with a simple syntax and dynamic nature. The 
scientific Python community’s dedication to good docu-
mentation and focus on free and open-source packages 
are attractive features that played heavily in the decision 
to write iris in Python. While pure Python code typi-
cally results in poor performance, bottlenecks can eas-
ily be rewritten in a more efficient, compiled language, 
and seamlessly integrated with existing Python code [5]. 
It should be stressed that performance-critical parts of 
our software ecosystem are, in fact, thin layers of Python 
code on top of fast C libraries. The Python scientific stack 
is built on the de facto standard numpy package [29] 
that exports array operations rooted in compiled code, 
bypassing the slow nature of Python in most situations. 
Therefore, Python provides an ideal mix of performance 
and ease of development.

Results and discussion
Interactive data exploration
The primary tool presented in this work is iris, first and 
foremost a graphical user-interface (GUI) program that 
allows for interactive exploration of ultrafast electron 
scattering data. From its GUI, users can interact with raw 
data, process this raw data into a reduced dataset, ena-
bling interactive data exploration. Iris’ second role con-
sists of a library of data structures for handling ultrafast 
scattering data in external Python scripts and programs. 
Everything that can be done in the GUI can also be done 
programmatically.

The first step in the typical iris workflow involves inter-
acting with raw scattering patterns from a variety of 
possible unique formats. For this purpose, Iris supports 
plug-ins that act as bridges between arbitrary data for-
mats for raw data and iris’s internal representation.

The second step in the typical iris workflow consists 
of data reduction. During this phase, equivalent scat-
tering patterns acquired with the same time-delay are 
reduced in parallel. This reduction operation can involve 
image-alignment, intensity normalization, or any opera-
tion specified by a plug-in. Scattering patterns are then 
concatenated into a three-dimensional array, similar to 
a video. Experimental metadata, such as sample tem-
perature, photoexcitation conditions, electron energy, 
and more, are also preserved. Arbirary metadata can be 
defined by users through the use of plug-ins. The per-
formance optimization of the data reduction pipeline is 

discussed in depth in “Streaming operations on arrays” 
section.

Iris handles large reduced datasets by storing them 
using the Hierarchical Data Format version 5 (HDF5), an 
archival format designed for large n-dimensional numeri-
cal datasets [3, 13]. HDF5 supports transparent compres-
sion and data-corruption detection mechanisms. Most 
importantly, HDF5 supports data slicing, which allows to 
read specific portions of an HDF5 file without having to 
load the entire file—which can require tens of gigabytes 
of memory in the case of fully reduced UES datasets.

The final stage of the exploration workflow—time-
series extraction—is specific to time-resolved techniques. 
Thanks to HDF5’s data slicing feature and careful perfor-
mance optimizations within iris, dynamics in scattering 
patterns can be explored interactively, in real-time. Fur-
ther data transformations are also possible, most impor-
tantly azimuthal averaging of scattering patterns from 
polycrystalline samples. Time-series extraction in the 
GUI is shown in Fig. 2 for two types of samples, single-
crystal and polycrystal.

Iris was designed with compatibility in mind. For 
input compatibility, iris’s plug-in architecture allows to 
interface with arbitrary data formats. Writing a plug-in 
requires writing some Python code: users can then use 
the full power of the scientific Python stack to introduce 
extra processing in iris’s data reduction pipeline. In terms 
of output compatibility, iris datasets can be inspected 
and manipulated by a large variety of programs, thanks 
to HDF5’s official and unofficial bindings to program-
ming languages such as C/C++, Fortran77/Fortran90, 
LabVIEW, MATLAB, Mathematica, R, Julia, Python, and 
many more. The HDF5 layout is described in the online 
documentation.

Streaming operations on arrays
Raw scattering datasets can reach sizes up to hundreds 
of gigabytes. The reduction operation of concatenat-
ing images into dense numpy arrays, and then reduc-
ing—which usually involves scattering pattern alignment, 
intensity normalization, and finally a weighted average—
is a slow process.

To effectively reduce the raw data, the package 
npstreams was created. Npstreams extends the core 
components of the array-oriented numpy package 
(called universal functions) to work on streams of 
arrays rather than dense, in-memory arrays. Npstreams 
can automagically generate streaming functions from 
numpy universal functions. The streams of arrays 
can be generated on-demand (such as images being 
progressively loaded from disk). Stream operations 
require much less memory, which in turns allows for 
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parallelization. In fact, in the special case of stream 
operations on arrays of the same size (e.g., on images), 
data reduction can operate in constant-memory.

In the case of data reduction in iris, a stream of arrays 
is formed by progressively loading scattering patterns at 
same time-delay (but from different scans). Therefore, 
the reduction of a dataset of many time-delays and many 
scans to a dataset of many time-delays and a single scan 
can be done in parallel. In the limiting case where data 
processing performance is not bound by data loading 
time, the performance increase due to npstreams alone is 
linear in the number of processing units. Thus, an 8-core 
computer would experience an 8x performance increase 
by using npstreams in parallel.

Single-core performance is also improved. To meas-
ure single-core performance, benchmarks set up a 
sequence of n× n arrays of random floating-point 
numbers representing scattering patterns. Then, 
arrays are either directly averaged using npstreams, or 
concatenated into a dense ndarray which is in turns 

averaged using numpy. The results of running this 
benchmark on sequence of varying lengths and arrays 
of varying sizes is presented in Fig. 3.

While the core of npstreams is concerned with 
autogenerating streaming functions from basic uni-
versal numpy functions, some more complex stream-
ing functions are implemented, with the aim of 
providing real-world examples. For instance, a stream-
ing weighted average and streaming weighted standard 
deviation routines are included, based on West [33].

Npstreams also includes benchmarking functionality, 
where users can generate benchmark results on their 
machine with a simple command, as shown in Fig. 4.

The functionality of npstreams extends beyond the 
requirements of iris and scikit-ued. Streaming array 
operations can deal with an infinite stream of arrays. 
For example, an operation can be applied until certain 
criteria are met, or a pipeline can be assembled which 
can run forever, in constant (low) memory.

Fig. 2  Overview of the GUI component of iris. Two GUI instances show typical datasets. On the top left, Bragg peak dynamics for photoexcited 
single-crystal data is shown. Diffracted intensity is integrated in the red square and its time dependence is shown in the bottom panel. On the 
bottom right, azimuthally averaged baseline-corrected polycrystalline scattering data are presented. The pre-photoexcitation scattering patterns 
have been subtracted so that dynamics are more evident. Diffraction patterns are color-coded based on their time-delay, shown below. Diffracted 
intensity is integrated inside the blue zone and its time dependence is again shown on the bottom panel. Both integration regions can be 
interactively dragged, updating the time-series in real-time
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Reusable routines and data structures for ultrafast electron 
scattering data analysis
The scientific Python community has access to over 50 
research-oriented packages called scikits, extensions 
of the general-purpose SciPy package [17]. These soft-
ware packages provide routines and algorithms for han-
dling image processing (scikit-image [30]), performing 
machine-learning tasks (scikit-learn [24]), interacting 
with spectroscopy data (scikit-spectra), bio-informatics 
(scikit-bio), and much more. In the tradition of these 
scikits, we introduce scikit-ued, a collection of algo-
rithms, routines, and data structures commonly needed 
for ultrafast electron scattering data interactions. Most 
operations iris performs on datasets are offloaded to 
scikit-ued.

Scikit-ued provides a repository of reusable compo-
nents in many domains, such as image analysis, crystal 
structure manipulation, baseline-removal, simulation, 
common utilities, and more. Some of its features are 
described in the following sections.

Baseline‑removal
The baseline-removal functionality provided by scikit-
ued is the evolution of the approach previously pub-
lished by the authors. Readers interested in the details are 
referred to [6]. Some extensions have been made, such 
as the ability to compute a background for 2D images 
using the iterative algorithm based on the discrete wave-
let transform presented in [7]. This approach can be used 
to remove blemishes on images: by treating hot spots or 
defects as foreground, the baseline of the original image 
will show no hotspots. An example of this is shown in 
Fig. 5.

Image analysis
Scattering patterns analysis intersects with general image 
processing in many ways. In most cases, other libraries 
such as scikit-image can be used. Specific tasks not widely 
available elsewhere have been included in scikit-ued.

A common data processing task, implemented in the 
data reduction pipeline of iris, is scattering pattern align-
ment to a reference. During the course of data acquisi-
tion, scattering patterns can drift across the detector due 
to fluctuations in the electron beam alignment, while 
other image components (e.g., beam-stop, hard edges, 
detector defects) will appear static. Therefore, cross-cor-
relation techniques used in image registration generally 
fail at scattering pattern alignment. Scikit-ued includes 
an advanced image-alignment algorithm, known as the 
masked normalized cross-correlation image registration 
[22]. By masking static components of scattering data, 
the image registration algorithm will only compare mis-
aligned sections, greatly enhancing registration accuracy. 
An example of this algorithm is presented in Fig. 6.

Symmetry-based operations are also implemented in 
scikit-ued. One such operation is azimuthal averaging, a 
procedure during which polycrystalline scattering pat-
terns are reduced to one radial dimension. Scikit-ued 
includes discrete symmetry-based operations as well, 
most importantly discrete rotational averaging. Scatter-
ing patterns exhibiting n-fold rotational symmetry can be 
transformed to yield a higher signal-to-noise ratio. This 
approach has recently been used to extract small ultrafast 
diffuse scattering signals from graphite [26]. An example 
of such symmetrization is presented in Fig. 7.

Structure manipulation
Scikit-ued includes data structures that make it easy 
to read and manipulate crystallographic information. 
The Crystal class is the primary data structure giv-
ing access to atomic positions, chemical composition, 
lattice information, and more. It can be generated 
from a few types of sources, with the most convenient 

a

b

Fig. 3  Performance characterization of the npstreams package in 
comparison with numpy. The task was to average sequences of 2D 
arrays (representing scattering patterns). a Wall time of averaging 
for a sequence of 10 arrays (solid) superimposed with maximum 
memory usage (dashed). The vertical-dashed line marks the array size 
of 2048× 2048 , equivalent to a scattering pattern of 4 megapixels. b 
Speed-up of using npstreams vs. numpy for averaging a sequence of 
arrays of size 512× 512 elements



Page 6 of 11René de Cotret et al. Adv Struct Chem Imag  (2018) 4:11 

type involving the ubiquitous Crystal Information File 
(CIF) format [2, 15]. Structures can also be pulled from 
entries in the Crystallography Open Database [9, 10], 
as well as generated from Protein Data Bank entries [1, 
14]. A number of structures (mostly simple elemental 
crystals) are included with the package. Finally, Crys-
tal instances can be generated from (and converted 
to) the Atomic Simulation Environment Atoms for-
mat [20]. An example of structure manipulation is pre-
sented in Fig. 8.

Once a Crystal instance has been created, space-
group information and symmetry operations can be 
determined through the library spglib [12, 27]. Using 
this information, crystals can also be reduced to their 
primitive cells.

Simulation
Scikit-ued has built-in support for calculation of crystal 
potentials, based on the parametrization of Kirkland [18]. 
The example of real-space, projected electrostatic poten-
tial of orthorhombic barium titanate (BaTiO3 ) is shown 
in Fig.  9. These calculations are required in the imple-
mentation of multislice simulations [4, 19].

From the parametrization of atomic potentials, the 
atomic form factors can also be calculated—and from 
them static structure factors. Scikit-ued exports a routine 
for simulating electron diffraction patterns for polycrys-
talline samples based on the atomic positions of Crys-
tal objects. Examples of simulated diffraction patterns 
from built-in scikit-ued structures are presented in 
Fig. 10.

>>> import npstreams as ns
>>> ns.benchmark ()
********************************************************************************

NPSTREAMS PERFORMANCE BENCHMARK

npstreams 1.5.3
NumPy 1.14.3

Speedup is NumPy time divided by npstreams time (Higher is better)
********************************************************************************

numpy.average vs npstreams.average

shape = (4, 4) speedup = 1.2707x
shape = (8, 8) speedup = 1.3454x
shape = (16, 16) speedup = 1.5626x
shape = (64, 64) speedup = 2.2815x

--------------------------------------------------------------------------------

numpy.sum vs npstreams.sum

shape = (4, 4) speedup = 1.2645x
shape = (8, 8) speedup = 1.3963x
shape = (16, 16) speedup = 1.5897x
shape = (64, 64) speedup = 2.3401x

--------------------------------------------------------------------------------

numpy.add vs npstreams.reduce_ufunc(numpy.add , ...)

shape = (4, 4) speedup = 1.3326x
shape = (8, 8) speedup = 1.4502x
shape = (16, 16) speedup = 1.5985x
shape = (64, 64) speedup = 3.6624x

-------------------------------------------------------------------------------

... (continued) ...

Fig. 4  How to run npstreams benchmarks suite from the interactive Pythoninterpreter. By default, a pre-selected set of functions from both the 
numpyand npstreams packages are compared
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Input and output
Scikit-ued provides routines to read exotic image file for-
mats. Scikit-ued can read Merlin Image Binary files (*.
mib)—both single image and multi-images files—as well 
as Gatan’s proprietary DM3 and DM4 formats (*.dm3, 
*.dm4). Scikit-ued can also read all images supported 
by scikit-image, notably images encoded in the Tagged 
Image File Format (*.tiff).

Miscellaneous
Many small utilities are included in scikit-ued. Fast com-
putation of pseudo-voigt profiles is included and inte-
grated with the polycrystalline diffraction simulation 
routine, based on the work by Ida et  al. [16]. Calcula-
tion of thin film optical properties is also implemented, 
based on Tomlin [28]. Finally, a preliminary version of 
the non-uniform Fast Fourier Transform (NFFT) is avail-
able [11]. Additional functionality is presented in the 
documentation.

Common features
All three libraries presented herein benefit from some 
common features and development tools.

First and foremost, all three packages are documented 
online (offline documentation is also available). Reference 

documentation is automatically generated from the 
source code, which limits the possibility of documenta-
tion being out-of-date with respect to the source code 
[23]. The documentation for all three packages also 
includes hand-written tutorials. The documentation for 
each package is hosted online by Read the Docs and links 
are specified in see “Availability of data and materials” 
section.

The repositories are hosted on GitHub, a web-based 
code hosting service with built-in version control through 
Git. As the packages are free and open-source, GitHub 
can be used to browse source code. It also provides fea-
tures not available through Git itself, most importantly 
an issue tracker. This issue tracker is also directly acces-
sible from the iris GUI through a help menu. Bugs and 
issues raised through GitHub are publicly visible and pro-
vide a place to discuss potential solutions.

After changes are committed to one of the repositories, 
the updated package is automatically installed and tested 
in a remote environment—a practice known as con-
tinuous integration. Committed changes also trigger the 
automatic generation of a new documentation version, 
which is then posted online within minutes.

Fig. 5  Removing image hotspots using an iterative baseline-removal algorithm based on the discrete wavelet transform. a Original scattering 
pattern shows hotspots due to laser light hitting the detector. b Baseline of a. The hotspots are treated as the foreground by the iterative algorithm

(See figure on next page.)
Fig. 6  Scattering pattern alignment based on the masked normalized cross-correlation algorithm. a Reference scattering patterns of polycrystalline 
chromium. b Misaligned scattering pattern. c Difference between the patterns in a and b shows structure indicative of a sideways shift. Note that 
the beam block has not moved. d Pixel mask of the beam block. Black pixels represent zones to be ignored by the alignment procedure. e Aligned 
image, registered without the mask in d. f Difference between a and e shows residual misalignment. g Aligned image, registered with the mask in 
d. f Difference between a and g shows successful alignment
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Fig. 7  Example of symmetrization of single-crystal scattering patterns. a Raw single-crystal scattering pattern. Inset shows the pixel mask indicating 
where the beam-block is located. Pixels under the mask are ignored during the symmetrization routine. c Sixfold rotational symmetrization of 
scattering pattern in a with beam-block masked reduces noise and enhances dynamics

>>> from skued import Crystal
>>> c = Crystal.from_cod (9009089) # Latest revision by default
>>> print(c)
< Crystal object with following unit cell:

Atom O @ (0.90, 0.79, 0.80)
Atom O @ (0.10, 0.21, 0.20)
Atom O @ (0.10, 0.29, 0.70)
Atom O @ (0.90, 0.71, 0.30)
Atom O @ (0.39, 0.69, 0.29)
Atom O @ (0.39, 0.81, 0.79)
Atom O @ (0.61, 0.19, 0.21)
Atom O @ (0.61, 0.31, 0.71)
Atom V @ (0.24, 0.53, 0.53)
Atom V @ (0.76, 0.48, 0.47)
Atom V @ (0.24, 0.97, 0.03)
Atom V @ (0.76, 0.03, 0.97)

Lattice parameters:
5.743Å, 4.517Å, 5.375Å, 90.00◦, 122.60◦, 90.00◦

Source:
COD num :9009089 rev:latest >

>>> print(c.spacegroup_info ())
{’hall_number ’ : 81,
’hall_symbol ’ : ’-P 2ybc ’,
’international_full ’ : ’P 1 2_1/c 1’,
’international_number ’: 14,
’international_symbol ’: ’P2_1/c’,
’pointgroup ’ : ’C2h ’}

>>> print(c.chemical_composition )
{’O’: 0.666,
’V’: 0.333}

Fig. 8  Generating a Crystal instance for vanadium dioxide from theCrystallography Open Database entry 9009089 [34], inside the 
interactivePython interpreter
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Finally, stable versions of all three packages are 
uploaded to the Python Packaging Index (PyPI), where 
they can be inspected and downloaded. For users of the 
Anaconda Python distribution, the three packages are 
also available for install within the conda environment, 
which provides pre-compiled packages.

Roadmap
The natural progression for iris involves data explora-
tion along different dimensions beyond time: diffracted 

intensity along dimensions of fluence, temperature, dop-
ing concentration, and more.

The target functionality of npstreams has largely been 
implemented. The obvious key improvement concerns 
performance, which could be increased by rewriting 
the core functionality in C, while exploiting numpy’s C 
interface.

Future developments of scikit-ued concern the simu-
lation subpackage. Simulation of polycrystalline scat-
tering pattern is indispensable as a tool to test methods 
and validate hypotheses; simulation of single-crystal 
scattering patterns is a natural evolution of scikit-ued’s 
capabilities. While the basic parametrizations of atomic 
properties are already implemented, as well as the com-
putation of real-space electrostatic potential of arbitrary 
crystal structures (see Fig.  9), wave-propagation calcu-
lations—e.g., the multislice algorithm—remain to be 
implemented. See [25] for a summary of available elec-
tron scattering and microscopy simulation tools to which 
scikit-ued could bind.

Conclusion
An ecosystem of three free and open-source Python 
packages for exploring ultrafast electron scattering data 
was presented. This ecosystem, governed by permis-
sive licenses, was created with collaboration in mind, 
while adhering to sane software development practice. 
We introduced npstreams, a streaming array-processing 
library that allows for constant-memory data reduction. 
Scikit-ued, a scipy extension that contains algorithms 
and data structures for the analysis of UES data, was 
also presented. Finally, the ecosystem culminates in the 
iris package, the first integrated data exploration inter-
face specifically tailored to the data-rich nature of UES. 
Iris’ plug-in functionality as well as real-time, interactive 
capabilities pushes the limits of what is possible in field of 
ultrafast electron scattering.
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