
René de Cotret et al. Adv Struct Chem Imag (2018) 4:11
https://doi.org/10.1186/s40679-018-0060-y

METHODOLOGY

An open‑source software ecosystem
for the interactive exploration of ultrafast
electron scattering data
Laurent P. René de Cotret1*, Martin R. Otto1, Mark J. Stern1 and Bradley J. Siwick1,2

Abstract 

This paper details a software ecosystem comprising three free and open-source Python packages for processing
raw ultrafast electron scattering (UES) data and interactively exploring the processed data. The first package, iris, is
graphical user-interface program and library for interactive exploration of UES data. Under the hood, iris makes use of
npstreams, an extensions of numpy to streaming array-processing, for high-throughput parallel data reduction. Finally,
we present scikit-ued, a library of reusable routines and data structures for analysis of UES data, including specialized
image processing algorithms, simulation routines, and crystal structure manipulation operations. In this paper, some
of the features or all three packages are highlighted, such as parallel data reduction, image registration, interactive
exploration. The packages are fully tested and documented and are released under permissive licenses.

Keywords:  Ultrafast electron scattering, Visualization, Data processing, Open-source

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
The advent of ultrafast electron diffraction (UES) has
extended crystallography into the temporal dimension.
Combining the spatial resolution of electron microscopy
and femtosecond time-resolution, this laboratory-scale
technique has shed light on a broad spectrum of phe-
nomena, from photoinduced structural phase transitions
in inorganic [21, 32] and organic materials [8], to coher-
ent nuclear motion in dilute molecular gas [36]. Beyond
probing structure through elastic interactions, UES has
provided a direct observation of electron–phonon cou-
plings and phonon relaxation pathways in layered materi-
als [26, 31].

Ultrafast electron scattering is a stroboscopic tech-
nique. Electron scattering patterns are acquired a fixed
time-delay after photoexcitation with an ultrafast laser.
A full view of the scattering dynamics can be assem-
bled by acquiring electron scattering patterns for suf-
ficient time-delays. To maximize the signal-to-noise
ratio, equivalent experiments—hereafter referred to as

scans—are acquired sequentially. This set of equivalent
sub-experiments forms the raw experimental data. In
order to extract time-dynamics, the data must be dis-
tilled, or reduced; the data reduction might involve scat-
tering intensity normalization or alignment, and ends in
averaging. A physical picture of dynamics in a sample is
built by looking at in scattering intensity over time, in a
fixed region of reciprocal space. A conceptual view of the
flow from raw data to dynamics is presented in Fig. 1.

The path from data acquisition to scientific insights can
never be fully standardized and streamlined. However,
one step common to all workflows is data exploration.
This is especially important for time-resolved techniques
such as UES due to the breadth and depth of information
contained in a dataset. This emerging field would benefit
greatly from an aggregation of efforts towards free and
open-source tools that standardize and simplify analysis
and interpretation of complex dynamics. In this work, we
present a program built specifically for interactive data
exploration, iris. We also introduce a software package
of reusable routines and data structures related to ultra-
fast electron scattering (scikit-ued) and a streaming array
operations package (npstreams), establishing a software

Open Access

*Correspondence: laurent.renedecotret@mail.mcgill.ca
1 Department of Physics, McGill University, Montréal, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-018-0060-y&domain=pdf

Page 2 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Fi
g.

 1
 U

ltr
af

as
t e

le
ct

ro
n

sc
at

te
rin

g
da

ta
 e

xp
lo

ra
tio

n
w

or
kfl

ow
. T

o
m

ax
im

iz
e

si
gn

al
s,

ul
tr

af
as

t e
le

ct
ro

n
sc

at
te

rin
g

ex
pe

rim
en

ts
 c

on
si

st
 in

 m
an

y
id

en
tic

al
 s

ub
-e

xp
er

im
en

ts
 (o

r s
ca

ns
),

as
 s

ho
w

n
on

 th
e

to
p

rig
ht

. D
at

a
re

du
ct

io
n

co
ns

is
ts

 in
 c

om
bi

ni
ng

 th
es

e
su

b-
ex

pe
rim

en
ts

, w
hi

ch
 u

su
al

ly
 in

vo
lv

e
im

ag
e-

al
ig

nm
en

t,
in

te
ns

ity
 n

or
m

al
iz

at
io

n,
 a

nd
 o

th
er

 c
or

re
ct

io
ns

. E
ac

h
in

di
vi

du
al

 ti
m

e-
de

la
y

ca
n

be

re
du

ce
d

in
 p

ar
al

le
l. T

he
 re

su
lti

ng
 re

du
ce

d
da

ta
 a

re
 a

 s
ta

ck
 o

f s
ca

tt
er

in
g

pa
tt

er
ns

, s
im

ila
r t

o
a

vi
de

o.
 S

ca
tt

er
in

g
in

te
ns

ity
 ti

m
e-

se
rie

s
ca

n
be

 e
xt

ra
ct

ed
 fr

om
 e

ith
er

 a
 s

in
gl

e
pi

xe
l o

r i
nt

eg
ra

te
d

ov
er

 a

gr
ou

ps
 o

f p
ix

el
s

(lo
w

er
 ri

gh
t)

Page 3 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

foundation on which the community can build. Iris is the
first integrated solution for interacting with UES data.

Methods
The software ecosystem presented in this work is writ-
ten in Python; the language is accessible to non-pro-
grammers, with a simple syntax and dynamic nature. The
scientific Python community’s dedication to good docu-
mentation and focus on free and open-source packages
are attractive features that played heavily in the decision
to write iris in Python. While pure Python code typi-
cally results in poor performance, bottlenecks can eas-
ily be rewritten in a more efficient, compiled language,
and seamlessly integrated with existing Python code [5].
It should be stressed that performance-critical parts of
our software ecosystem are, in fact, thin layers of Python
code on top of fast C libraries. The Python scientific stack
is built on the de facto standard numpy package [29]
that exports array operations rooted in compiled code,
bypassing the slow nature of Python in most situations.
Therefore, Python provides an ideal mix of performance
and ease of development.

Results and discussion
Interactive data exploration
The primary tool presented in this work is iris, first and
foremost a graphical user-interface (GUI) program that
allows for interactive exploration of ultrafast electron
scattering data. From its GUI, users can interact with raw
data, process this raw data into a reduced dataset, ena-
bling interactive data exploration. Iris’ second role con-
sists of a library of data structures for handling ultrafast
scattering data in external Python scripts and programs.
Everything that can be done in the GUI can also be done
programmatically.

The first step in the typical iris workflow involves inter-
acting with raw scattering patterns from a variety of
possible unique formats. For this purpose, Iris supports
plug-ins that act as bridges between arbitrary data for-
mats for raw data and iris’s internal representation.

The second step in the typical iris workflow consists
of data reduction. During this phase, equivalent scat-
tering patterns acquired with the same time-delay are
reduced in parallel. This reduction operation can involve
image-alignment, intensity normalization, or any opera-
tion specified by a plug-in. Scattering patterns are then
concatenated into a three-dimensional array, similar to
a video. Experimental metadata, such as sample tem-
perature, photoexcitation conditions, electron energy,
and more, are also preserved. Arbirary metadata can be
defined by users through the use of plug-ins. The per-
formance optimization of the data reduction pipeline is

discussed in depth in “Streaming operations on arrays”
section.

Iris handles large reduced datasets by storing them
using the Hierarchical Data Format version 5 (HDF5), an
archival format designed for large n-dimensional numeri-
cal datasets [3, 13]. HDF5 supports transparent compres-
sion and data-corruption detection mechanisms. Most
importantly, HDF5 supports data slicing, which allows to
read specific portions of an HDF5 file without having to
load the entire file—which can require tens of gigabytes
of memory in the case of fully reduced UES datasets.

The final stage of the exploration workflow—time-
series extraction—is specific to time-resolved techniques.
Thanks to HDF5’s data slicing feature and careful perfor-
mance optimizations within iris, dynamics in scattering
patterns can be explored interactively, in real-time. Fur-
ther data transformations are also possible, most impor-
tantly azimuthal averaging of scattering patterns from
polycrystalline samples. Time-series extraction in the
GUI is shown in Fig. 2 for two types of samples, single-
crystal and polycrystal.

Iris was designed with compatibility in mind. For
input compatibility, iris’s plug-in architecture allows to
interface with arbitrary data formats. Writing a plug-in
requires writing some Python code: users can then use
the full power of the scientific Python stack to introduce
extra processing in iris’s data reduction pipeline. In terms
of output compatibility, iris datasets can be inspected
and manipulated by a large variety of programs, thanks
to HDF5’s official and unofficial bindings to program-
ming languages such as C/C++, Fortran77/Fortran90,
LabVIEW, MATLAB, Mathematica, R, Julia, Python, and
many more. The HDF5 layout is described in the online
documentation.

Streaming operations on arrays
Raw scattering datasets can reach sizes up to hundreds
of gigabytes. The reduction operation of concatenat-
ing images into dense numpy arrays, and then reduc-
ing—which usually involves scattering pattern alignment,
intensity normalization, and finally a weighted average—
is a slow process.

To effectively reduce the raw data, the package
npstreams was created. Npstreams extends the core
components of the array-oriented numpy package
(called universal functions) to work on streams of
arrays rather than dense, in-memory arrays. Npstreams
can automagically generate streaming functions from
numpy universal functions. The streams of arrays
can be generated on-demand (such as images being
progressively loaded from disk). Stream operations
require much less memory, which in turns allows for

Page 4 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

parallelization. In fact, in the special case of stream
operations on arrays of the same size (e.g., on images),
data reduction can operate in constant-memory.

In the case of data reduction in iris, a stream of arrays
is formed by progressively loading scattering patterns at
same time-delay (but from different scans). Therefore,
the reduction of a dataset of many time-delays and many
scans to a dataset of many time-delays and a single scan
can be done in parallel. In the limiting case where data
processing performance is not bound by data loading
time, the performance increase due to npstreams alone is
linear in the number of processing units. Thus, an 8-core
computer would experience an 8x performance increase
by using npstreams in parallel.

Single-core performance is also improved. To meas-
ure single-core performance, benchmarks set up a
sequence of n× n arrays of random floating-point
numbers representing scattering patterns. Then,
arrays are either directly averaged using npstreams, or
concatenated into a dense ndarray which is in turns

averaged using numpy. The results of running this
benchmark on sequence of varying lengths and arrays
of varying sizes is presented in Fig. 3.

While the core of npstreams is concerned with
autogenerating streaming functions from basic uni-
versal numpy functions, some more complex stream-
ing functions are implemented, with the aim of
providing real-world examples. For instance, a stream-
ing weighted average and streaming weighted standard
deviation routines are included, based on West [33].

Npstreams also includes benchmarking functionality,
where users can generate benchmark results on their
machine with a simple command, as shown in Fig. 4.

The functionality of npstreams extends beyond the
requirements of iris and scikit-ued. Streaming array
operations can deal with an infinite stream of arrays.
For example, an operation can be applied until certain
criteria are met, or a pipeline can be assembled which
can run forever, in constant (low) memory.

Fig. 2  Overview of the GUI component of iris. Two GUI instances show typical datasets. On the top left, Bragg peak dynamics for photoexcited
single-crystal data is shown. Diffracted intensity is integrated in the red square and its time dependence is shown in the bottom panel. On the
bottom right, azimuthally averaged baseline-corrected polycrystalline scattering data are presented. The pre-photoexcitation scattering patterns
have been subtracted so that dynamics are more evident. Diffraction patterns are color-coded based on their time-delay, shown below. Diffracted
intensity is integrated inside the blue zone and its time dependence is again shown on the bottom panel. Both integration regions can be
interactively dragged, updating the time-series in real-time

Page 5 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Reusable routines and data structures for ultrafast electron
scattering data analysis
The scientific Python community has access to over 50
research-oriented packages called scikits, extensions
of the general-purpose SciPy package [17]. These soft-
ware packages provide routines and algorithms for han-
dling image processing (scikit-image [30]), performing
machine-learning tasks (scikit-learn [24]), interacting
with spectroscopy data (scikit-spectra), bio-informatics
(scikit-bio), and much more. In the tradition of these
scikits, we introduce scikit-ued, a collection of algo-
rithms, routines, and data structures commonly needed
for ultrafast electron scattering data interactions. Most
operations iris performs on datasets are offloaded to
scikit-ued.

Scikit-ued provides a repository of reusable compo-
nents in many domains, such as image analysis, crystal
structure manipulation, baseline-removal, simulation,
common utilities, and more. Some of its features are
described in the following sections.

Baseline‑removal
The baseline-removal functionality provided by scikit-
ued is the evolution of the approach previously pub-
lished by the authors. Readers interested in the details are
referred to [6]. Some extensions have been made, such
as the ability to compute a background for 2D images
using the iterative algorithm based on the discrete wave-
let transform presented in [7]. This approach can be used
to remove blemishes on images: by treating hot spots or
defects as foreground, the baseline of the original image
will show no hotspots. An example of this is shown in
Fig. 5.

Image analysis
Scattering patterns analysis intersects with general image
processing in many ways. In most cases, other libraries
such as scikit-image can be used. Specific tasks not widely
available elsewhere have been included in scikit-ued.

A common data processing task, implemented in the
data reduction pipeline of iris, is scattering pattern align-
ment to a reference. During the course of data acquisi-
tion, scattering patterns can drift across the detector due
to fluctuations in the electron beam alignment, while
other image components (e.g., beam-stop, hard edges,
detector defects) will appear static. Therefore, cross-cor-
relation techniques used in image registration generally
fail at scattering pattern alignment. Scikit-ued includes
an advanced image-alignment algorithm, known as the
masked normalized cross-correlation image registration
[22]. By masking static components of scattering data,
the image registration algorithm will only compare mis-
aligned sections, greatly enhancing registration accuracy.
An example of this algorithm is presented in Fig. 6.

Symmetry-based operations are also implemented in
scikit-ued. One such operation is azimuthal averaging, a
procedure during which polycrystalline scattering pat-
terns are reduced to one radial dimension. Scikit-ued
includes discrete symmetry-based operations as well,
most importantly discrete rotational averaging. Scatter-
ing patterns exhibiting n-fold rotational symmetry can be
transformed to yield a higher signal-to-noise ratio. This
approach has recently been used to extract small ultrafast
diffuse scattering signals from graphite [26]. An example
of such symmetrization is presented in Fig. 7.

Structure manipulation
Scikit-ued includes data structures that make it easy
to read and manipulate crystallographic information.
The Crystal class is the primary data structure giv-
ing access to atomic positions, chemical composition,
lattice information, and more. It can be generated
from a few types of sources, with the most convenient

a

b

Fig. 3  Performance characterization of the npstreams package in
comparison with numpy. The task was to average sequences of 2D
arrays (representing scattering patterns). a Wall time of averaging
for a sequence of 10 arrays (solid) superimposed with maximum
memory usage (dashed). The vertical-dashed line marks the array size
of 2048× 2048 , equivalent to a scattering pattern of 4 megapixels. b
Speed-up of using npstreams vs. numpy for averaging a sequence of
arrays of size 512× 512 elements

Page 6 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

type involving the ubiquitous Crystal Information File
(CIF) format [2, 15]. Structures can also be pulled from
entries in the Crystallography Open Database [9, 10],
as well as generated from Protein Data Bank entries [1,
14]. A number of structures (mostly simple elemental
crystals) are included with the package. Finally, Crys-
tal instances can be generated from (and converted
to) the Atomic Simulation Environment Atoms for-
mat [20]. An example of structure manipulation is pre-
sented in Fig. 8.

Once a Crystal instance has been created, space-
group information and symmetry operations can be
determined through the library spglib [12, 27]. Using
this information, crystals can also be reduced to their
primitive cells.

Simulation
Scikit-ued has built-in support for calculation of crystal
potentials, based on the parametrization of Kirkland [18].
The example of real-space, projected electrostatic poten-
tial of orthorhombic barium titanate (BaTiO3 ) is shown
in Fig. 9. These calculations are required in the imple-
mentation of multislice simulations [4, 19].

From the parametrization of atomic potentials, the
atomic form factors can also be calculated—and from
them static structure factors. Scikit-ued exports a routine
for simulating electron diffraction patterns for polycrys-
talline samples based on the atomic positions of Crys-
tal objects. Examples of simulated diffraction patterns
from built-in scikit-ued structures are presented in
Fig. 10.

>>> import npstreams as ns
>>> ns.benchmark ()
**

NPSTREAMS PERFORMANCE BENCHMARK

npstreams 1.5.3
NumPy 1.14.3

Speedup is NumPy time divided by npstreams time (Higher is better)
**

numpy.average vs npstreams.average

shape = (4, 4) speedup = 1.2707x
shape = (8, 8) speedup = 1.3454x
shape = (16, 16) speedup = 1.5626x
shape = (64, 64) speedup = 2.2815x

--

numpy.sum vs npstreams.sum

shape = (4, 4) speedup = 1.2645x
shape = (8, 8) speedup = 1.3963x
shape = (16, 16) speedup = 1.5897x
shape = (64, 64) speedup = 2.3401x

--

numpy.add vs npstreams.reduce_ufunc(numpy.add , ...)

shape = (4, 4) speedup = 1.3326x
shape = (8, 8) speedup = 1.4502x
shape = (16, 16) speedup = 1.5985x
shape = (64, 64) speedup = 3.6624x

... (continued) ...

Fig. 4  How to run npstreams benchmarks suite from the interactive Pythoninterpreter. By default, a pre-selected set of functions from both the
numpyand npstreams packages are compared

Page 7 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Input and output
Scikit-ued provides routines to read exotic image file for-
mats. Scikit-ued can read Merlin Image Binary files (*.
mib)—both single image and multi-images files—as well
as Gatan’s proprietary DM3 and DM4 formats (*.dm3,
*.dm4). Scikit-ued can also read all images supported
by scikit-image, notably images encoded in the Tagged
Image File Format (*.tiff).

Miscellaneous
Many small utilities are included in scikit-ued. Fast com-
putation of pseudo-voigt profiles is included and inte-
grated with the polycrystalline diffraction simulation
routine, based on the work by Ida et al. [16]. Calcula-
tion of thin film optical properties is also implemented,
based on Tomlin [28]. Finally, a preliminary version of
the non-uniform Fast Fourier Transform (NFFT) is avail-
able [11]. Additional functionality is presented in the
documentation.

Common features
All three libraries presented herein benefit from some
common features and development tools.

First and foremost, all three packages are documented
online (offline documentation is also available). Reference

documentation is automatically generated from the
source code, which limits the possibility of documenta-
tion being out-of-date with respect to the source code
[23]. The documentation for all three packages also
includes hand-written tutorials. The documentation for
each package is hosted online by Read the Docs and links
are specified in see “Availability of data and materials”
section.

The repositories are hosted on GitHub, a web-based
code hosting service with built-in version control through
Git. As the packages are free and open-source, GitHub
can be used to browse source code. It also provides fea-
tures not available through Git itself, most importantly
an issue tracker. This issue tracker is also directly acces-
sible from the iris GUI through a help menu. Bugs and
issues raised through GitHub are publicly visible and pro-
vide a place to discuss potential solutions.

After changes are committed to one of the repositories,
the updated package is automatically installed and tested
in a remote environment—a practice known as con-
tinuous integration. Committed changes also trigger the
automatic generation of a new documentation version,
which is then posted online within minutes.

Fig. 5  Removing image hotspots using an iterative baseline-removal algorithm based on the discrete wavelet transform. a Original scattering
pattern shows hotspots due to laser light hitting the detector. b Baseline of a. The hotspots are treated as the foreground by the iterative algorithm

(See figure on next page.)
Fig. 6  Scattering pattern alignment based on the masked normalized cross-correlation algorithm. a Reference scattering patterns of polycrystalline
chromium. b Misaligned scattering pattern. c Difference between the patterns in a and b shows structure indicative of a sideways shift. Note that
the beam block has not moved. d Pixel mask of the beam block. Black pixels represent zones to be ignored by the alignment procedure. e Aligned
image, registered without the mask in d. f Difference between a and e shows residual misalignment. g Aligned image, registered with the mask in
d. f Difference between a and g shows successful alignment

Page 8 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Page 9 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Fig. 7  Example of symmetrization of single-crystal scattering patterns. a Raw single-crystal scattering pattern. Inset shows the pixel mask indicating
where the beam-block is located. Pixels under the mask are ignored during the symmetrization routine. c Sixfold rotational symmetrization of
scattering pattern in a with beam-block masked reduces noise and enhances dynamics

>>> from skued import Crystal
>>> c = Crystal.from_cod (9009089) # Latest revision by default
>>> print(c)
< Crystal object with following unit cell:

Atom O @ (0.90, 0.79, 0.80)
Atom O @ (0.10, 0.21, 0.20)
Atom O @ (0.10, 0.29, 0.70)
Atom O @ (0.90, 0.71, 0.30)
Atom O @ (0.39, 0.69, 0.29)
Atom O @ (0.39, 0.81, 0.79)
Atom O @ (0.61, 0.19, 0.21)
Atom O @ (0.61, 0.31, 0.71)
Atom V @ (0.24, 0.53, 0.53)
Atom V @ (0.76, 0.48, 0.47)
Atom V @ (0.24, 0.97, 0.03)
Atom V @ (0.76, 0.03, 0.97)

Lattice parameters:
5.743Å, 4.517Å, 5.375Å, 90.00◦, 122.60◦, 90.00◦

Source:
COD num :9009089 rev:latest >

>>> print(c.spacegroup_info ())
{’hall_number ’ : 81,
’hall_symbol ’ : ’-P 2ybc ’,
’international_full ’ : ’P 1 2_1/c 1’,
’international_number ’: 14,
’international_symbol ’: ’P2_1/c’,
’pointgroup ’ : ’C2h ’}

>>> print(c.chemical_composition)
{’O’: 0.666,
’V’: 0.333}

Fig. 8  Generating a Crystal instance for vanadium dioxide from theCrystallography Open Database entry 9009089 [34], inside the
interactivePython interpreter

Page 10 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Finally, stable versions of all three packages are
uploaded to the Python Packaging Index (PyPI), where
they can be inspected and downloaded. For users of the
Anaconda Python distribution, the three packages are
also available for install within the conda environment,
which provides pre-compiled packages.

Roadmap
The natural progression for iris involves data explora-
tion along different dimensions beyond time: diffracted

intensity along dimensions of fluence, temperature, dop-
ing concentration, and more.

The target functionality of npstreams has largely been
implemented. The obvious key improvement concerns
performance, which could be increased by rewriting
the core functionality in C, while exploiting numpy’s C
interface.

Future developments of scikit-ued concern the simu-
lation subpackage. Simulation of polycrystalline scat-
tering pattern is indispensable as a tool to test methods
and validate hypotheses; simulation of single-crystal
scattering patterns is a natural evolution of scikit-ued’s
capabilities. While the basic parametrizations of atomic
properties are already implemented, as well as the com-
putation of real-space electrostatic potential of arbitrary
crystal structures (see Fig. 9), wave-propagation calcu-
lations—e.g., the multislice algorithm—remain to be
implemented. See [25] for a summary of available elec-
tron scattering and microscopy simulation tools to which
scikit-ued could bind.

Conclusion
An ecosystem of three free and open-source Python
packages for exploring ultrafast electron scattering data
was presented. This ecosystem, governed by permis-
sive licenses, was created with collaboration in mind,
while adhering to sane software development practice.
We introduced npstreams, a streaming array-processing
library that allows for constant-memory data reduction.
Scikit-ued, a scipy extension that contains algorithms
and data structures for the analysis of UES data, was
also presented. Finally, the ecosystem culminates in the
iris package, the first integrated data exploration inter-
face specifically tailored to the data-rich nature of UES.
Iris’ plug-in functionality as well as real-time, interactive
capabilities pushes the limits of what is possible in field of
ultrafast electron scattering.

Abbreviations
UES: ultrafast electron scattering; GUI: graphical user-interface; HDF5: hierar-
chical data format version 5; CIF: crystal information file; COD: crystallography
open database; PyPI: Python packaging index.

Authors’ contributions
LPRDC designed and implemented the software packages. LPRDC prepared
the manuscript. MRO and MJS contributed data to showcase features of the
software ecosystem. All authors read and approved the final manuscript.

Author details
1 Department of Physics, McGill University, Montréal, Canada. 2 Department
of Chemistry, McGill University, Montréal, Canada.

Acknowledgements
The authors would like to thank Samuel Palato and Hélène Seiler for their
guidance concerning software design principles. The authors are also grateful
to the contributors and maintainers of the several free and open-source pack-
ages on top of which this software ecosystem is built.

Fig. 9  Simulated electrostatic potential of orthorhombic barium
titanate (BaTiO3 ) projected onto the z = 0 plane Structure file was
taken from [35]

a

b

c

Fig. 10  Simulated polycrystalline electron diffraction patterns for
gold, graphite, and monoclinic M1 VO2

Page 11 of 11René de Cotret et al. Adv Struct Chem Imag (2018) 4:11

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data presented in this manuscript are publicly available in the scikit-ued
repository. The software packages’ repositories are linked on the authors’
homepage (http://www.physi​cs.mcgil​l.ca/siwic​klab/softw​are.html). All pack-
ages are multi-platform and require the CPython interpreter version 3.6 or
later. The iris and scikit-ued are licensed under the Massachusetts Institute of
Technology (MIT) license, while npstreams is licensed under the Berkeley Soft-
ware Distribution (BSD) 3-clause license (same as numpy). The documentation
for each package is hosted online by Read the Docs at the addresses located
below: Iris: https​://iris-ued.readt​hedoc​s.io/, Scikit-ued: https​://sciki​t-ued.readt​
hedoc​s.io/, Npstreams: https​://npstr​eams.readt​hedoc​s.io/.

Funding
This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), the Fonds de Recherche du Québec-Nature et
Technologies (FRQNT), and Canada Research Chairs (CRC) program.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 19 June 2018 Accepted: 11 September 2018

References
	1.	 Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,

Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res.
28(1), 235–242 (2000)

	2.	 Bjrkman, T.: Cif2cell: generating geometries for electronic structure pro-
grams. Comput. Phys. Commun. 182(5), 1183–1186 (2011)

	3.	 Collette, A.: Python and HDF5. O’Reilly, Sebastopol (2013)
	4.	 Cowley, J.M.: Chapter 11—multi-slice approaches. In: Cowley, J.M. (ed.)

Diffraction physics (Third Edition), North-Holland Personal Library, 3rd
edn, pp. 231–254. North-Holland, Amsterdam (1995)

	5.	 Dalcin, L., Bradshaw, R., Smith, K., Citro, C., Behnel, S., Seljebotn, D.S.:
Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39 (2010)

	6.	 de Cotret, L.P.R., Siwick, B.J.: A general method for baseline-removal in
ultrafast electron powder diffraction data using the dual-tree complex
wavelet transform. Struct. Dyn. 4(4), 044004 (2017)

	7.	 Galloway, C.M., Le Ru, E.C., Etchegoin, P.G.: An iterative algorithm for
background removal in spectroscopy by wavelet transforms. Appl. Spectr.
63(12), 1370–1376 (2009)

	8.	 Gao, M., Lu, C., Jean-Ruel, H., Liu, L.C., Marx, A., Onda, K., Koshihara, S.-Y.,
Nakano, Y., Shao, X., Hiramatsu, T., Saito, G., Yamochi, H., Cooney, R.R.,
Moriena, G., Sciaini, G., Miller, R.J.D.: Mapping molecular motions leading
to charge delocalization with ultrabright electrons. Nature 496(7445),
343–6 (2013)

	9.	 Graulis, S., Dakevi, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirs, M.,
Serebryanaya, N.R., Moeck, P., Downs, R.T., Le Bail, A.: Crystallography open
database (cod): an open-access collection of crystal structures and plat-
form for world-wide collaboration. Nucleic Acids Res. 40(D1), D420–D427
(2012)

	10.	 Gražulis, S., Chateigner, D., Downs, R.T., Yokochi, A.F.T., Quirós, M., Lut-
terotti, L., Manakova, E., Butkus, J., Moeck, P., Le Bail, A.: Crystallography
open database—an open-access collection of crystal structures. J. Appl.
Crystallogr. 42(4), 726–729 (2009)

	11.	 Greengard, L., Lee, J.-Y.: Accelerating the nonuniform fast Fourier trans-
form. SIAM Rev. 46(3), 443–454 (2004)

	12.	 Grosse-Kunstleve, R.W.: Algorithms for deriving crystallographic space-
group information. Acta Crystallogr. A 55(2 Part 2), 383–395 (1999)

	13.	 Group, T.H.: Hierarchical data format, version 5, 1997–2018. https​://www.
hdfgr​oup.org/HDF5/.

	14.	 Hamelryck, T., Manderick, B.: Pdb file parser and structure class imple-
mented in Python. Bioinformatics 19(17), 2308–2310 (2003)

	15.	 Hester, J.R.: A validating CIF parser: PyCIFRW. J. Appl. Crystallogr. 39(4),
621–625 (2006)

	16.	 Ida, T., Ando, M., Toraya, H.: Extended pseudo voigt function for approxi-
mating the voigt profile. J. Appl. Crystallogr. 33(6), 1311–1316 (2000)

	17.	 Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools
for Python, (2001) (Online; accessed <today>)

	18.	 Kirkland, E.J.: Advanced computing in electron microscopy, 2nd edn.
Springer, New York (2010)

	19.	 Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem
images using a modified multislice method. Ultramicroscopy 23(1),
77–96 (1987)

	20.	 Larsen, A.H., Mortensen, J.J., Blomqvist, J., Castelli, I.E., Christensen, R.,
Duak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., Hermes, E.D., Jen-
nings, P.C., Jensen, P.B., Kermode, J., Kitchin, J.R., Kolsbjerg, E.L., Kubal, J.,
Kaasbjerg, K., Lysgaard, S., Maronsson, J.B., Maxson, T., Olsen, T., Pastewka,
L., Peterson, A., Rostgaard, C., Schitz, J., Schtt, O., Strange, M., Thygesen,
K.S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K.W.: The
atomic simulation environment a python library for working with atoms.
J. Phys. Condensed Matter 29(27), 273002 (2017)

	21.	 Morrison, V.R., Chatelain, R.P., Tiwari, K.L., Hendaoui, A., Bruhacs, A., Chaker,
M., Siwick, B.J.: A photoinduced metallic phase of monoclinic VO2
revealed by ultrafast electron diffraction. Science 341(6208), 19 (2014)

	22.	 Padfield, D.: Masked object registration in the Fourier domain. IEEE Trans.
Image Proces. 21(5), 2706–2718 (2012)

	23.	 Pawlik, A., Segal, J., Sharp, H., Petre, M.: Crowdsourcing scientific software
documentation: a case study of the numpy documentation project.
Comput. Sci. Eng. 17(1), 28–36 (2015)

	24.	 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

	25.	 Pryor, A., Ophus, C., Miao, J.: A streaming multi-gpu implementation of
image simulation algorithms for scanning transmission electron micros-
copy. Adv. Struct. Chem. Imaging 3(1), 15 (2017)

	26.	 Stern, M.J., René de Cotret, L.P., Otto, M.R., Chatelain, R.P., Boisvert, J.-P., Sut-
ton, M., Siwick, B.J.: Mapping momentum-dependent electron-phonon
coupling and nonequilibrium phonon dynamics with ultrafast electron
diffuse scattering. Phys. Rev. B 97, 165416 (2018)

	27.	 Togo, A.: spglib: finding and handling crystal symmetries, 2009–2018.
	28.	 Tomlin, S.G.: Optical reflection and transmission formulae for thin films. J.

Phys. D 1(12), 1667 (1968)
	29.	 van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure

for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30
(2011)

	30.	 van der Walt, S., Schönberger, J .L., Nunez-Iglesias, J., Boulogne, F., Warner,
J .D., Yager, N., Gouillart, E., Yu, T a: scikit-image: image processing in
python. Peer J. 2, e453 (2014)

	31.	 Waldecker, L., Bertoni, R., Hübener, H., Brumme, T., Vasileiadis, T., Zahn, D.,
Rubio, A., Ernstorfer, R.: Momentum-resolved view of electron–phonon
coupling in multilayer wse2 . Phys. Rev. Lett. 119, 036803 (2017)

	32.	 Waldecker, L., Miller, T.a, Rudé, M., Bertoni, R., Osmond, J., Pruneri, V., Simp-
son, R.E., Ernstorfer, R.: Time-domain separation of optical properties from
structural transitions in resonantly bonded materials. Nat. Mater. 14(July),
1–6 (2015)

	33.	 West, D.H.D.: Updating mean and variance estimates: an improved
method. Commun. ACM 22(9), 532–535 (1979)

	34.	 Wyckoff, R.W.G.: Crystal structure, vol. 1. Interscience Publishers, New York
(1963)

	35.	 Xiao, C., Jin, C., Wang, X.: Crystal structure of dense nanocrystalline batio3
ceramics. Mater. Chem. Phys. 111(2), 209–212 (2008)

	36.	 Yang, J., Guehr, M., Shen, X., Li, R., Vecchione, T., Coffee, R., Corbett, J., Fry,
A., Hartmann, N., Hast, C., Hegazy, K., Jobe, K., Makasyuk, I., Robinson, J.,
Robinson, M.S., Vetter, S., Weathersby, S., Yoneda, C., Wang, X., Centurion,
M.: Diffractive imaging of coherent nuclear motion in isolated molecules.
Phys. Rev. Lett. 117, 153002 (2016)

http://www.physics.mcgill.ca/siwicklab/software.html
https://iris-ued.readthedocs.io/
https://scikit-ued.readthedocs.io/
https://scikit-ued.readthedocs.io/
https://npstreams.readthedocs.io/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/

	An open-source software ecosystem for the interactive exploration of ultrafast electron scattering data
	Abstract
	Background
	Methods
	Results and discussion
	Interactive data exploration
	Streaming operations on arrays
	Reusable routines and data structures for ultrafast electron scattering data analysis
	Baseline-removal
	Image analysis
	Structure manipulation
	Simulation
	Input and output
	Miscellaneous

	Common features
	Roadmap

	Conclusion
	Authors’ contributions
	References

