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Abstract 

In the realm of signal and image denoising and reconstruction, ℓ1 regularization techniques have generated a great 
deal of attention with a multitude of variants. In this work, we demonstrate that the ℓ1 formulation can sometimes 
result in undesirable artifacts that are inconsistent with desired sparsity promoting ℓ0 properties that the ℓ1 formula-
tion is intended to approximate. With this as our motivation, we develop a multiscale higher-order total variation 
(MHOTV) approach, which we show is related to the use of multiscale Daubechies wavelets. The relationship of 
higher-order regularization methods with wavelets, which we believe has generally gone unrecognized, is shown to 
hold in several numerical results, although notable improvements are seen with our approach over both wavelets 
and classical HOTV. These results are presented for 1D signals and 2D images, and we include several examples that 
highlight the potential of our approach for improving two- and three-dimensional electron microscopy imaging. In 
the development approach, we construct the tools necessary for MHOTV computations to be performed efficiently, 
via operator decomposition and alternatively converting the problem into Fourier space.
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Introduction
Over the past couple of decades, ℓ1 regularization tech-
niques such as total variation have become increasingly 
popular methods for image and signal denoising and 
reconstruction problems. Along with TV [1], a large vari-
ety of approaches for similar ℓ1 regularization approaches 
have been proposed for an array of problems. Signal and 
image recovery methods continue to attract a great deal 
of interest due to the wide variety of potential applica-
tions and ever increasing means of various sensing mech-
anisms to acquire data. To name a few, synthetic aperture 
radar (SAR) [2, 3], magnetic resonance imaging (MRI) 
[4–6], electron tomography [7, 8], and inpainting [9, 10] 
are all image recovery applications that have advanced 
in part due to ℓ1 regularization methods, and in each 
case the approach can be tailored to the challenges that 
the particular application poses. With many problems 
such as two- and three-dimensional electron microscopy 
imaging, the challenge is often to acquire as little data as 

necessary due to possible damage of the subject being 
imaged or because of time constraints, driving the need 
for inverse methods that can achieve the absolute best 
results from very limited and noisy data.

The mathematical description of the general prob-
lem we are interested in is to recover a signal or image 
f ∈ R

N , from noisy measurements b of the form 
b = Af + ǫ , where A ∈ R

m×N is some sensing matrix 
that approximates the physical model of the particular 
problem. For example, in electron tomography f is a 3D 
nano-structure, b is a collection of projected microscopy 
images/data of f, and A is the projection operator that 
relates f and b. Given these ingredients, the ℓ1 regularized 
solution is given by

where T is some sparsifying linear transform and � is a 
parameter that balances the effects of the data and reg-
ularization terms. The appropriateness of this approach 
is that some prior knowledge of the signal informs one 
that Tf is sparse, or approximately sparse, and that the 

(1)frec = arg min
f

{

�Af − b�22 + ��Tf �1
}

,
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formulation with the ℓ1 norm encourages such spar-
sity [11–13]. In many applications, some knowledge of 
the appropriate transform is available, particularly with 
images and for other signals, this knowledge is in the 
form of some “smoothness.”

In the case of TV, the sparsifying transform is given 
by T : RN → R

N−1 , where (Tf )i = fi+1 − fi . The general 
idea for this approach is that the signal f is assumed to be 
piecewise constant with a few discontinuities, in which 
case Tf is sparse. If this is not precisely true, this approach 
still effectively reduces unwanted oscillations at the cost 
of the well documented asing effect [14, 15]. However, for 
more general piecewise smooth functions higher-order 
TV (HOTV) regularization methods are effective [14, 16, 
17], and they do not suffer from the staircasing effects. In 
this case, the transform maps f to approximations of dis-
crete derivatives of f, e.g., higher-order finite differences 
of f.

Another popular choice for T is wavelet transform [4, 
18, 19]. For instance, such a transform can be written as 
T : RN → R

N , where (Tf )j = �f ,ψj� and ψj are ortho-
normal so that f =

∑

j�f ,ψj�ψj . The idea here is that for 
appropriately smooth signals, most of the signal’s energy 
is captured in the few low-frequency, larger-scaled ele-
ments of the basis. Thus, most of the coefficients can be 
neglected, and thus a sparse approximation of f exists 
with respect to the basis.

Discussion and contribution
The crux of general ℓ1 regularization methods is that 
recovering a signal with the most sparse representation, 
that is recovering the solution with the smallest so called 
ℓ0 norm, is often equivalent to its convexly relaxed vari-
ant of recovering the signal with the smallest ℓ1 norm, 
which is a field of study called compressed sensing (CS) 
[11–13]. Although convex ℓ1 optimization algorithms are 
useful in promoting sparsity, some small nonzero coeffi-
cients may still persist, an obvious sign that the assump-
tions needed for the exactness guarantees given by CS 
theory sometimes do not hold in practice. This observa-
tion is largely the original motivation of our present work 
in developing a multiscale HOTV approach related to 
multiscale wavelet regularization.

Much work has been devoted to understanding and 
developing sparsity promoting regularization methods, 
which are related to our current work. Numerous vari-
ants of higher-order TV methods have been proposed 
[14, 17, 20]. For example, in [20], the authors propose 
an edge detection operator that annihilates polynomi-
als, which leads them to operators close to finite differ-
ence matrices. In [14], a combination of a TV regularizer 
with a quadratic second-order regularizer is developed in 
the continuous domain to eliminate staircasing effects. 

Likewise, several authors have shown that using some 
combination of first- and second-order methods to be 
beneficial [16, 21–23]. Unfortunately, since there are 
multiple regularization terms, these methods typically 
introduce additional parameters that need to be tuned. 
In terms of theory, it has been well documented that 
under certain conditions, TV and HOTV are equivalent 
to reconstruction with splines [24, 25], i.e., the solution 
of such methods recovers a piecewise polynomial with a 
sparse set of jumps.

TV denoising in particular has several very interest-
ing equivalences. It is well known that TV denoising and 
other more general first-order denoising methods are 
equivalent to smoothing with a certain nonlinear diffu-
sion models [26], a typical result of writing the equivalent 
Euler–Lagrange equations. Perhaps discussed less fre-
quently and most related to the observations in our cur-
rent work, TV denoising is equivalent to soft threshold 
denoising with the highest-frequency basis elements of 
the Haar wavelets [27, 28], in particular with the so-called 
cycle spinning [29]. In general, however, the main differ-
ence between these methods is that with TV, the smooth-
ness analysis is limited to the finest scales, whereas 
wavelet regularizations promote function smoothness at 
multiple scales. A main contribution of this article is to 
expand further on the relationship between wavelets in 
ℓ1 regularization and those ℓ1 methods related to HOTV. 
In regards to extension of wavelets, a number of multidi-
mensional generalizations have been invented including 
curvelets and shearlets [18, 30, 31], which are primarily 
used for sparse function approximation and improve the 
approximation rates in two- and three dimensions com-
pared with their one-dimensional counterparts. In terms 
of application, TV and HOTV methods have been shown 
to be effective for multidimensional electron microscopy 
data processing [7–9, 32], and these data sets serve as 
strong evidence for the potential of improved imaging in 
these domains with our method.

The method we develop here is an alternative for 
HOTV regularization which we refer to as multi-
scale HOTV (MHOTV). In contrast to previous work, 
our approach considers combining both a multiscale 
approach and higher-order TV methods for the class of 
image reconstruction problems. The motivation for such 
an approach is in observable sub par results due to the 
relaxation of the sparsity promotion through the ℓ1 norm, 
contrary to the aforementioned results with splines [24, 
25]. In light of this, we determined this calls for analy-
sis of the function behavior at multiple scales. As can be 
deduced, this multiscale strategy is similar to the treat-
ment of wavelets, and we argue that our approach is 
indeed related to the use of Daubechies wavelets, with 
the main divergence coming in the orthogonality and/or 
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frame conditions prescribed by the wavelets. Orthogonal-
ity may be unnecessary for general ℓ1 regularization tech-
niques, although fundamental to thresholding denoising 
techniques, and the relaxation of this condition in our 
approach allows for better localization of the transform. 
In the development of MHOTV, we carefully address the 
computational concerns associated with our approach 
through the use of both the FFT and operator decompo-
sitions. We are able to show through several numerical 
examples that MHOTV provides a notable improvement 
to the current alternatives, and in particular our method 
is highlighted for potential improvements to two- and 
three-dimensional electron microscopy imaging.

The organization of the remainder of the article is as 
follows. In “HOTV and multiscale generalizations” sec-
tion, we define the HOTV operators and the correspond-
ing multiscale generalizations, and we precisely define 
the MHOTV ℓ1 regularization model. We also motivate 
the approach via a numerical example, make the connec-
tion with Daubechies wavelets, and show initial improve-
ments with our method. In “Fast calculation of MHOTV 
operators” section, we address the computational con-
cerns associated with calculating MHOTV coefficients, 
devising two distinct ways that they can be calculated 
in an efficient manner. In “Application to multidimen-
sional electron microscopy and tomography” section, our 
method is highlighted for two- and three-dimensional 
electron microscopy imaging, both for denoising and 
tomographic imaging, indicating overall improvements 
for imaging in these domains with our approach. “Quan-
titative results” section provides robust quantitative 
results that further confirm the improvements seen with 
the previous examples. All of the results indicate that 
MHOTV is an improvement to the original HOTV and 
the related Daubechies wavelets. Some proofs and defini-
tions are provided in Appendix.

HOTV and multiscale generalizations
As an alternative to TV regularization, general order TV 
methods have been shown to be effective for ℓ1 regulari-
zation [8, 14, 16, 20]. The TV transform can be thought 
of as a finite difference approximation of the first deriva-
tive, thus annihilating a function in locations where the 
function is a constant, i.e., a polynomial of degree zero. 
Likewise, higher-order TV transforms can be considered 
higher-order finite difference approximations to higher-
order derivatives, thus annihilating the corresponding 
degree polynomials. With this in mind, we have the fol-
lowing definition:

Definition 1  (Finite differences) Let φk ∈ R
N be defined 

by

Then for f ∈ R
N , the periodic kth order finite difference 

of f is given by

where ∗ denotes the discrete convolution.

Remark 1  The convolution in this definition (and in 
general) can be represented by multiplication with a cir-
culant matrix �k , where each row of �k holds a shifted 
version of φk . An example of the matrix in the case k = 2 
is given by

Note that this definition uses a periodic extension of f 
and can be ignored by dropping the last k rows of �k.

With this definition, the HOTV model can be said to 
recover

Unfortunately, for many real-world imaging problems, 
the equivalence between ℓ1 and ℓ0 may not hold in prac-
tice, yet the ℓ1 regularization still tends to encourage 
favorable solutions. In terms of the sparsity promoting 
transform, this means that the transform of the recovered 
function may not be truly sparse, but most of the values 
are instead relatively close to zero. For HOTV, this means 
that a local Taylor expansion of the recovered function 
will still contain some small nonzero higher-order coeffi-
cients, yet essentially unobservable at the very local scale. 
In other words, at some point t, there exists a polynomial 
expansion of minimal degree of f given by

which holds for all x within some small interval I around 
the point t. Ideally, a solution given by the order k HOTV 
model recovers a solution so that the coefficients αm(t) 

(2)

(φk)m =







(−1)k if m = 0
0 if 1 ≤ m < N − k

(−1)k+m+N
� k
N−m

�

if N − k ≤ m < N

.

f ∗ φk ,

(3)
�2 =

















1 − 2 1 0 . . . 0
0 1 − 2 1 . . . 0
0 0 1 − 2 . . . 0
...

. . . . . .
...

1 0 . . . 1 − 2
−2 1 . . . 0 1

















.

(4)frec = arg min
f

{

�Af − b�22 + ���k f �1
}

.

(5)f (x)≈
M
∑

m=0

αm(t)
(x − t)m

m!
,
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vanish for m ≥ k . The ℓ1 model allows for these coeffi-
cients to remain, although very small, and the function 
still appears to essentially be a polynomial of degree less 
than k. However, when this behavior persists over many 
points at a larger scale, the result can be a function which 
looks more like a trigonometric polynomial rather than 
an algebraic one.

This phenomenon is demonstrated in Fig.  1, where a 
piecewise polynomial of degree two was reconstructed 
from random noisy samples with 50% sampling1 using 
TV and HOTV regularizations. The sampling matrix 
A ∈ R

N/2×N is constructed so that a random 10% of its 
entries are set to be nonzero, where these nonzero val-
ues are uniformly distributed over [0,  1]. The samples 
were corrupted with normally distributed mean zero 
noise. Two different grid sizes are demonstrated, 256 and 
1024, and it can be observed that these small oscillations 
become increasingly abundant with more grid points. 
However, in the bottom of the figure, the third-order 
finite difference of the HOTV3 solution plotted in loga-
rithmic scale shows that locally this oscillatory behavior 
results in almost exact low-order polynomials, although 
very small amplitudes persist in the transformed domain, 
and thus not truly sparse in the ℓ0 sense. Nevertheless, all 
regularization approaches should still be deemed useful, 
as evidenced by the least squares solution shown.

Due to these phenomena, we propose a multiscale 
HOTV approach, which considers the regularization 
transform at multiple scales. The idea is that a larger 
stencil would penalize these oscillations even with the ℓ1 
norm. As TV generalizes to the Haar wavelet by stretch-
ing and scaling of the elements, we propose the same 
with HOTV. To this end, we give the following definition.

Definition 2  (Multiscale finite differences) Let 
φk ,j ∈ R

N be defined by

Then for f ∈ R
N , the periodic kth order finite difference 

of scale j of f is given by

where ∗ denotes the discrete convolution.

(6)

(φk ,j)m

=











(−1)k if m = 0
0 if 1 ≤ m ≤ N − j(k + 1)

(−1)
k+⌊N−m

j ⌋� k
⌊N−m

j ⌋
�

if N − j(k + 1) < m < N
.

f ∗ φk ,j ,

Remark 2  Again, this convolution can be represented as 
multiplication with a circulant matrix �k ,j . An example of 
�k ,j in the case k = 2 and j = 2 is given in (7).

MHOTV reconstruction model
We now present the general model for MHOTV recon-
struction. Generally speaking, we still use the model 
presented in (1), where A maps the unknown func-
tion f to some perhaps noisy measurements given by b, 
from which we use to reconstruct f. Our sparsity pro-
moting transforms are now given by the matrices �k ,2j , 
for j = 0, 1, . . . , ℓ , where ℓ is the maximum scaling of 
the operator used and k is the chosen order. Setting our 
maximum scaling to ℓ = 0 corresponds to the tradi-
tional HOTV approach. Although not completely neces-
sary, we choose a dyadic scaling of the operators, similar 
to the treatment of wavelets. As with wavelets, we will 
show that this is convenient for computational purposes. 
Finally then our reconstruction model is given by

The factor of 2−j is a normalization that accounts for the 
increasing norms of each operator, which would other-
wise weigh too heavily to the largest scaling operator.2 
The scaling of the parameter � by ℓ+ 1 simplifies the 
selection of the parameter, which would otherwise need 
to be manually scaled by such a factor to account for the 
number of scales being used. By similar reasoning, the 
additional scaling by 2−k+1 is used to account for the 
order k of the method [33].

Relationship to Daubechies wavelets
Wavelets can be characterized as an orthonormal basis 
that is generated through a multiresolutional analysis [19, 
34]. The multiresolutional analysis leads to the shifting and 
dyadic stretching and scaling of a single generating mother 
wavelet, analogous to our treatment of MHOTV by shifting 
and stretching of a single row or element of the matrices 

(7)

�2,2 =

















1 1 − 2 − 2 1 1 0 . . . 0
0 1 1 − 2 − 2 1 1 . . . 0
0 0 1 1 − 2 − 2 1 . . . 0
...

. . . . . .
...

−2 − 2 1 1 0 0 . . . 1 1
1 − 2 − 2 1 1 0 . . . 0 1

















.

(8)

frec = arg min
f

{

�Af − b�22 +
�

ℓ+ 1

ℓ
∑

j=0

2−(j+k−1)��k ,2j f �1
}

.

1  The number of samples is half the number of grid points.
2  This is akin to the dyadic scaling of the wavelet basis elements after the 
dyadic stretching.
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�k . From this very general characterization, there are a 
number of parameters in the design of the wavelets. For 
Daubechies wavelets the smoothness is characterized by 
the number of vanishing moments, i.e., the number of poly-
nomial orders to which the wavelet is orthogonal. A wavelet 
with k vanishing moments acts as a multiscale differential 
operator of order k. As a trade off, an increasing number 
of vanishing moments chosen for the wavelet basis results 
in an increase in the support of the wavelet functions, and 

Daubechies wavelets are designed to yield the orthonormal 
wavelet basis of minimal support given a selected number 
of vanishing moments [19].

To develop a basic mathematical description of a wave-
let expansion, suppose we want to represent a uniform 
pixelated function with 2n pixels on [0, 1] in terms of the 
wavelet basis. Then denoting our scaling function and 
mother wavelet with k vanishing moments by ϕk and ψk , 
respectively, we have the following orthonormal wavelet 
representation

Here, ψk ,j,t(x) = 2j/2ψk

(

2jx − t
)

 and similarly for 
ϕk ,j,t , i.e., shrinking and scaling of the generating wave-
let functions. The parameter ℓ is a positive integer with 
0 ≤ ℓ ≤ n , and the value n− ℓ is said to be the number 
of scales in the wavelet expansion.3 With the representa-
tion in (9), the coefficients for the scaling functions in the 
first sum capture most of the energy of the signal, and the 
wavelet coefficients ck ,j,t = �f ,ψk ,j,t� vanish for values of t 
where f is a polynomial of degree k − 1 over the support 
of ψk ,j,t . For ℓ1 regularization, we only need to be con-
cerned with regularization of the wavelet coefficients in 
(9), and thus the coefficients for the scaling functions in 
the first sum are not included in the regularization.

Connecting these ideas to HOTV, we see that these 
transforms are playing similar roles. Both are prescribed 
by the number of vanishing moments, or in the language 
of HOTV, the highest-order polynomial that is annihi-
lated by the approach. Furthermore, both are designed 
to yield minimal support given the number of vanishing 
moments. The crucial difference lies in the orthogonality 
condition prescribed by wavelets, which further increases 
the support of the wavelet elements. We emphasize again 
that this condition is fundamental to compression and 
threshold denoising methods, but not necessarily useful 
with general image reconstruction problems.

Finally, one additional technique utilized for ℓ1 regulari-
zation and denoising as well is the use of a wavelet frame 
by taking all possible shifts for each scaling of the wave-
lets, which is sometimes referred to as translational invari-
ant cycle spinning [29, 35, 36]. This eliminates the lack of 
translation invariance of a wavelet basis that can otherwise 
result in unwanted artifacts near discontinuities. With this 
in mind, we may define the wavelet frame elements by

(9)

f =
2ℓ−1
∑

t=0

�f ,ϕk ,ℓ,t�ϕk ,ℓ,t +
n−1
∑

j=ℓ

2j−1
∑

t=0

�f ,ψk ,j,t�ψk ,j,t .

ψ̃k ,j,t(x) = 2j/2ψk

(

2j(x − t2−n
)

)

, t = 0, 1, . . . , 2n−1.

Fig. 1  Rows 2–4 and 7–9 reconstruction of a piecewise polynomial 
function of degree two shown in the top row over 256 (top 5 plots) 
and 1024 (bottom 5 plots) points from random sampling at 50%. The 
corresponding least squares solution is shown in the fifth plot, and 
the third-order finite difference of the HOTV3 solution over the 1024 
grid is shown on the bottom

3  For ℓ = n it is understood that the second sum is removed.
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Then the averaged wavelet frame representation of f may 
be written as

where �T
k ,j = (ψ̃k ,j,0, ψ̃k ,j,1, . . . , ψ̃k ,j,2n−1) . Hence, a wave-

let approach promotes sparsity with respect to the vec-
tors f ∗ ψk ,j,0 , or equivalently with respect to �k ,j f  . Then, 
a regularization norm in this setting takes the form

which is analogous to our regularization norm in (8). For 
wavelets, the scalings are inherent to function definitions, 
and the dyadic stretching of the elements is indicated by j 
as opposed to 2j.

The case when ℓ = n− 1 would be most closely related 
to the original HOTV, and for smaller values of ℓ , the 
wavelets are more comparable to the MHOTV develop-
ment in this article.

Since computing both MHOTV operators and wavelets 
coefficients are convolutional operations, we may visual-
ize their corresponding filters in Fourier space, providing 
us another basis for comparison, which we have done in 
Fig.  2. Each of these curves can be interpreted as high-
pass filters, where the higher levels pass increasingly 
lower frequencies. A very close similarity of the wavelet 
filters and MHOTV filters can be observed in Fig. 2, pro-
viding a strong visual confirmation to our preceding dis-
cussion on the close relationship between the two.

Repeat of 1D simulations
To compare MHOTV and wavelet regularized recon-
structions, we repeat the numerical examples presented 
in Fig.  1 with the same noisy data used for the HOTV 
reconstruction. The corresponding reconstruction with 
MHOTV and wavelets are presented in Fig.  3. Recall 
that the measurements were collected at a 50% sampling 
rate and corrupted with normally distributed mean zero 
noise. For the multiscale HOTV and wavelets, three scal-
ing levels were used. The selection of the regularization 
parameter � was set to the same value for each order 
for HOTV and the wavelets, where we used a similar 

f =
2ℓ−1
∑

t=0

�f ,ϕk ,ℓ,t�ϕk ,ℓ,t +
n−1
∑

j=ℓ

2j−n
2n−1
∑

t=0

�f , ψ̃k ,j,t�ψ̃k ,j,t

=
2ℓ−1
∑

t=0

�f ,ϕk ,ℓ,t�ϕk ,ℓ,t +
n−1
∑

j=ℓ

2j−n
�

T
k ,j(f ∗ ψk ,j,0(−x)),

(10)
n−1
∑

j=ℓ

��k ,j f �1,

normalization approach for the wavelets coefficients as 
presented in (8).

The results in Fig.  3 were generated with orders 1, 2, 
and 3. The order is indicated with the numbers next to 
the approach in the legends, e.g., we denote the order 
k = 3 MHOTV approach with MHOTV3. For a baseline 
comparison, the least squares solution is shown as well. 
Compared with the corresponding 1024 reconstruc-
tions from HOTV in Fig.  1, these solutions show clear 
improvements, particularly with the higher orders. As we 
expect, although the MHOTV1 and Haar wavelet coeffi-
cients are computed in a different manner, the resulting 
reconstruction is identical since the models are theoreti-
cally equivalent. They both exhibit the staircasing and 
noise effects in precisely the same locations. The higher-
order approaches also show many similar effects of the 
noisy features, exhibiting certain oscillatory features with 
the same general behavior in precisely the same loca-
tions. However, with the higher orders, these approaches 
are not equivalent and MHOTV provides regulatory 
information at finer scales due to the minimal support of 
the transform elements. The result appears to be a mod-
est improvement in the resulting reconstructions.

Finally, in the bottom of the figure, the third-order 
finite difference of the MHOTV3 solution is plotted 
in logarithmic scale. Comparing this with the original 
HOTV3 finite difference in Fig.  1, we observe that the 
solution exhibits much better sparsity with respect to this 
transform domain, as desired.

Fast calculation of MHOTV operators
Calculation of traditional HOTV coefficients is a com-
putationally inexpensive task, due to the sparsity of the 
matrix operator. However, with increasing dyadic scales 
the direct calculation increases exponentially. Due to 
this, in the proceeding section, we develop two distinct 
approaches which show that these calculations can be 
carried out with linear increase in the flop count with 
respect to the number of scales used.

Fast computation of standard HOTV can be done in 
several ways. One can construct the sparse matrix �k and 
perform matrix computations directly, a calculation with 
runtime of kN flops. One could make use of other proce-
dures, such as MATLAB’s “diff” command which requires 
the same flop count without storing the matrix. With 
MHOTV, these approaches become less appealing. With 
matrix construction, if one is using several scales, then 
several matrices need to be computed and stored, and the 
matrices become significantly less sparse for larger scales. 
The “diff” command cannot be implemented directly for 
larger-scale HOTV operators.

Another alternative is to use the Fourier convolution 
theorem to perform the convolution operation via a 
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product in Fourier space. For the traditional HOTV oper-
ators, this can be fairly slow compared with the matrix 
and “diff” approach, since the necessary two discrete 
Fourier transforms would require ∼ 2N log2N  flops 
compared with the kN flops for the alternative imple-
mentations. However, this method is relatively compara-
ble for MHOTV, since the Fourier transforms only need 
to be computed once to determine the coefficients at all 
scales.

We outline two procedures for efficient calculation 
of MHOTV. First, we describe the Fourier approach, 
where we derive precise formulas for the MHOTV Fou-
rier filters. Second, we describe an alternative efficient 
approach by decomposition of the MHOTV matrix 
operators.

Computation via Fourier transforms
By the Fourier convolution theorem, the MHOTV opera-
tors can be computed as multiplications in Fourier space, 
i.e.,

where F denotes the discrete Fourier transform. Although 
this can be numerically computed, it is a convenient to 
have an exact formula for the discrete Fourier transform 
of φk ,j . Moreover, analytic determination of F(φk ,j) allows 
us to generalize the MHOTV to fractional orders.

Proposition 1  The DFT of the vector φk ,j defined in (6) 
has an explicit expression given by

for ξ = 0, 1, . . . ,N − 1.

Proof  The expression for the ξ th Fourier coefficient in 
the DFT of φk ,j is given by

Notice that the terms 1 ≤ m ≤ N − j(k + 1) vanish by 
definition of φk ,j . For the latter terms, we make the substi-
tution n = N −m and flip the sum to give the expression

where the term n = 0 corresponds to j = 0 and the fol-
lowing indices n = 1, 2, . . . ,m(k + 1)− 1 , correspond to 
j = N − 1,N − 2, . . . ,N −m(k + 1)+ 1 , respectively. 
Notice that we may drop the N in the numerator of the 
exponential and that the values of φk ,j repeat over strings 
of length j. Therefore, each of these corresponding strings 
of exponential terms in (13) get the same weights, leading 
to the following sum:

Here, the inner sum represents the j consecutive terms 
in (13) that receive the same weights from φk ,j , namely 
(−1)m+k

(k
m

)

 . Switching the order of summation, we rec-
ognize the sum over m as a binomial expansion leading to

(11)f ∗ φk ,j = F−1
(

F(f ) · F(φk ,j)
)

,

(12)F(φk ,j)ξ =

(

e
i2πξ j
N − 1

)k+1

e
i2πξ
N − 1

,

(13)F(φk ,j)ξ =
N−1
∑

m=0

(φk ,j)me
−i2πξ
N m.

(14)

F(φk ,j)ξ =
j(k+1)−1
∑

n=0

(−1)
k+⌊ nj ⌋

(

k

⌊nj ⌋

)

e
−i2πξ
N (N−n),

(15)

F(φk ,j)ξ =
k

�

m=0



(−1)m+k

�

k

m

�





j−1
�

ℓ=0

e
i2πξ
N (jm+ℓ)







.

Fig. 2  The filters in Fourier space of wavelet and MHOTV convolution 
functions
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The remainder of the proof follows by elementary calcu-
lations.�  �

Fast computation via operator decomposition
In this section, we give a decomposition for the matrix 
operator �k ,2j and describe how this decomposition can 

F(φk ,j)ξ =
j−1
∑

ℓ=0

k
∑

m=0

(−1)m+k

(

k

m

)

e
i2πξ
N (jm+ℓ)

=
j−1
∑

ℓ=0

(

e
i2πξ
N j − 1

)k
e
i2πξ
N ℓ.

be used for rapid calculation of MHOTV operators. The 
decomposition of �k ,2j is given in the following theorem.

Theorem 1  Let the matrix Pj with entries {pm,n}Nm,n=1 be 
defined by

Then the following holds:

1	 The entries of Pk+1
j , which we denote by 

{pm,n(j, k)}Nm,n=1, are given by 

 where it is implied ℓ is an integer satisfying 
0 ≤ ℓ ≤ k + 1.

2	 �k ,2j has the decomposition 

 and therefore 

3	 The equality in (17) holds for any rearrangement of 
the product of matrices.

The proof of this theorem is given in Appendix. The 
matrices P2 and P2

2 are shown below to illustrate the 
sparse structure of these operators:

Proposition 2  Direct calculation of �k ,2j requires 2jNk 
flops. The same calculation using the decomposition in 
(17) requires jN (k + 1)+ Nk flops. The same calculation 
using the Fourier method requires 2N log2N + N .

(16)

pm,n =







1 ifm = n
1 if n = (m+ j − 1) mod (N )+ 1
0 if otherwise

.

pm,n(j, k) =
{
(k+1

ℓ

)

if n = (m+ jℓ− 1) mod (N )+ 1
0 if otherwise

,

(17)�k ,2j = Pk+1
j Pk+1

j−1 · · ·Pk+1
1 �k

(18)�k ,2j = Pk+1
j �k ,2j−1 .

P2 =









1 0 1 0 . . . 0
0 1 0 1 . . . 0
...

. . . . . .
...

0 1 0 . . . 1









,

P2
2 =









1 0 2 0 1 . . . 0
0 1 0 2 0 . . . 0
...

. . . . . .
...

0 2 0 1 0 . . . 1









.

Fig. 3  Reconstruction of a piecewise polynomial function of degree 
two over 1024 stencil from random sampling at 50%. Three scales are 
used for both the Daubechies wavelets and multiscale HOTV
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Proposition  2 is a direct result of Theorem  1, the 
Fourier convolution theorem combined with the FFT, 
and the flops required for the direct calculation. We 
assume that the FFT and inverse FFT can be computed 
in N log2N  flops, although the exact count is somewhat 
vague, depending on the precise algorithm and if N is 
a power of 2. To compute the full set of operators, we 
can get away with less flops and then adding the flops 
for each level. If we use the decomposition approach 
to calculate the operators as determined by (17), the 
associated computations are limited to that at the high-
est scale, since the intermediate scales are determined 
in this calculation as pointed out in (18). If we use the 
Fourier approach for calculating the coefficients in 
(8), only one forward FFT is required for the function 
f. Then, the product of F(f) and F(φk ,2j ) must be com-
puted for each j, as well as the inverse FFT for each of 
these products. The observations lead to the following 
corollary.

Corollary 1  Let T be the matrix containing the com-
plete set of ℓ+ 1 operators involved in the MHOTV ℓ1 reg-
ularization norm, so that TT = [�T

k ,1,�
T
k ,2, . . . ,�

T
k ,2ℓ

]. 

Then, calculating T using the operator decomposition 
given in Theorem 1 requires ℓN (k + 1)+ Nk flops. Calcu-
lating T using the Fourier approach requires a total flop 
count of (ℓ+ 2)N log2N + (ℓ+ 1)N .

A few concluding remarks are in order.

Remark 3  All of the results presented are for 1D sig-
nals. For higher dimensions say 2D, the operators can be 
applied along each row and column, and the flop count is 
only doubled, disregarding the likely increased number of 
indices.

Remark 4  To solve (8), we use the well-established alter-
nating direction method of multipliers (ADMM) [37–39]. 
This approach introduces splitting variables that allows 
one to split the objective functional into equivalent sub-
problems that can be solved relatively fast. Our algorithm 
can be downloaded at [40], and some of the simulations 
in the proceeding section can also be found there.

Application to multidimensional electron 
microscopy and tomography
In this section, we apply our proposed approach to 
nanoscale multidimensional electron microscopy data, 
for both denoising and tomographic reconstruction. The 
data used for our experiments are performed on one of 
the openly available tomographic tilt series data [41]. 

We use the data set labeled as “Tom_2”, which contains 
platinum nanoparticles embedded on a graphitized car-
bon nanofibre support. We apply our methods to these 
data in 2 ways: first as a 2D image denoising problem of a 
single projection and second as a 2D tomographic image 
reconstruction problem from the tilt series. These data 
serve as an excellent test case, since there are many pro-
jections with very high SNR, and we may test the accu-
racy of various methods by observing the results when 
we limit the quality of these data.

For the image denoising problem, we select one of the 
projection images from the full tilt series. These pro-
jection images have an excellent SNR, so we consider 
the original image as close to the ground truth. There-
fore, a noisy version of the image was generated, where 
the usual Poisson noise model for noise in micros-
copy images is assumed. The image was scaled so that 
the mean values for the number of electrons per pixel, 
and hence the mean value for the Poisson noise, is 10, 
resulting in a maximum SNR of 

√
10 . The original and 

noisy images are shown in Fig.  4a, b, respectively. For 
closer inspection, a zoomed region (indicated in (b)) 
is shown in (c) and (d), and a one-dimensional cross 
section of the 2D images are plotted in the right panel 
of Fig.  4. To account for the Poisson noise, we use a 
weighted ℓ2 norm for the fidelity term in (1), similar to 
that used in [42].

The resulting denoised version showing only the small 
region are given in Fig.  4e–h, and the 1D plots are also 
shown in the right panel. In (e) is TV denoising, in (f ) is 
HOTV denoising of order 3, and in (g) is our MHOTV 
denoising of order 3 with 3 levels. In (h) is the result of 
hard-thresholding with a shearlet frame [30, 31]. TV 
denoising is clearly not optimal for this type of image 
where an over-smoothing or over regularization occurs, 
since projection images most certainly do not abide by the 
general piecewise constant assumption, making higher-
order methods more preferable [9]. On the other hand, 
due to the low SNR in the noisy image, with the HOTV 
denoised image, we again observe many unwanted oscil-
lations. The MHOTV denoised image performs well in 
this regard, as well as the shearlet thresholding approach. 
Both retain much more of the image integrity than TV, 
while also eliminating most of the noise which is still pre-
sent with HOTV. The one-dimensional plots in the right 
panel agree with these observations.

For the next experiment with this data set, we recon-
struct the 3D volume of the object from the available tilt 
series. To see how this problem is formulated as a regu-
larized reconstruction in the form of (1), see for instance 
[8]. The tilt series is “full”, in the sense that the range of 
angles is over 180◦ taken at every 1◦ . A single 2D cross 
section from the 3D reconstruction is shown in Fig.  5, 
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Fig. 4  Denoising of an electron microscopy projection with Poisson noise. Small magnified patch is shown below for detailed analysis, where this 
patch is indicated in b. In a and c are the original image, with little noise, and in b and d are the simulated noisy images. In e is the TV denoised 
image, in f is the HOTV denoised, in g is the MHOTV denoised, and in h is the shearlet denoised by hard thresholding. One-dimensional plots of a 
single cross-section are shown on the right for an additional point of comparison
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and the 3D volume visualizations are shown in Fig.  6 
using the tomviz software [43]. The resulting recon-
struction from the full tilt series using the iterative least 
squares method known as SIRT (with a nonnegativity 
constraint) is shown in the top left of the Fig. 5, and this 
can be considered somewhat as an ideal solution. A small 
patch is magnified in the bottom right of the image for 
closer inspection. For a more challenging problem, we 
reduce the available tilt series to 10% of the data from 180 
projections taken at every 1◦ to only 18 projection taken 
at every 10◦ . The results of tomographic reconstruction 
from only these data are given in the remaining images in 
Fig. 5 along with the magnified image region. It is clearly 
observed that a notable degradation in the image qual-
ity takes place with the SIRT reconstruction in this case. 
We observe that the order 3 HOTV reconstruction again 
contains similar oscillatory artifacts observed previously. 
The shearlets are used in an iterative scheme here simi-
lar to the other ℓ1 regularization, as opposed to a simple 
post processing procedure with hard thresholding used 
in the denoising case. In this case, the shearlets do not 

perform as well. The TV and MHOTV on the other hand 
yield results similar to that with the full data set. With 
closer inspection in the magnified patch, we see that the 
TV does somewhat over smooth these small particles 
again, where MHOTV does an excellent job in separat-
ing the structure, perhaps even more accurately than the 
full data solution. Inspecting the 3D volumes in Fig.  6 
we observe similar effects. In particular, there is an obvi-
ous degradation of the solution from SIRT when limiting 
the data, and the TV and MHOTV solutions appear to 
mitigate this effect. On the other hand, the TV solution 
appears “blocky”, suffering from the well-known staircas-
ing effect [14, 15].

A simulated 2D tomographic image reconstruction was 
performed on the test image shown in Fig.  7, where the 
tomographic data are acquired with parallel beam geom-
etry as in electron tomography. We simulated a total of 
29 projection angles that are equally distributed across 
the full 180◦ angular range. Such a limited set of data are 
sometimes referred to as limited data tomography. Mean 
zero normally distributed noise was added to the data 

Fig. 5  The 2D tomographic reconstruction of a single cross section of the 3D object visualized by a 2D projection in Fig. 4. A small patch is 
magnified in the bottom right of each image, where this patch is indicated in the top left image. A total of 180 projections are available for the 
reconstruction (resulting in the reconstruction shown in the top left), and the remaining reconstructions shown are from limiting the data to only 
18 projections, i.e., only 10% of the original data
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values, where the variance σ 2 was set so that the SNR is 
25.

Baseline comparisons are obtained by a conjugate gra-
dient least squares solver and a filtered backprojection 
(FBP) reconstruction, which are shown in the figure. 
To ensure accurate comparison between the methods, 
the parameter � was set resulting in relative data errors, 
defined by �Af − b�2/�b�2 , to be all contained within an 
interval of size .0129.

As has been observed previously [8], due to a num-
ber of reasons including undersampling, noise, fine 
details between the image features, and nature of the 
regularization, the order 1 solutions (TV) can leave the 
fine features under resolved, even though the underly-
ing image is truly a piecewise constant that classical TV 
was originally designed to recover. Each of these order 
1 images appear relatively similar, with the MHOTV 
and Daubechies approaches showing modest improve-
ments in resolving some features. As in the 1D case, the 
HOTV3 solution exhibits some small local oscillations 

that appear as noise in the image. However, this image, 
as well as the other order 3 approaches resolve the fea-
tures notably more clear than the order 1 approaches. 
Both of the order 3 multiscale approaches appear less 
noisy than the HOTV order 3, while still maintaining a 
good approximation of the image features.

Quantitative results
We performed two sets of simulations to compare the 
methods in a more quantitative manner. The first set of 
results presented here involved setting up 100 differ-
ent test problems and then running all of our methods 
over each time for multiple noise levels, and the mean 
reconstruction error over all simulations is presented in 
Table  1, with the MHOTV resulting in the left of each 
column and Daubechies wavelets in the right of each 
column. It is important to note here that the parameter 
� in Eq. 8 was optimized in every reconstruction to yield 
the solution that minimized the true error between the 
test signal and the reconstruction, making for objective 

Fig. 6  Shown is the volume rendering of the 3D tomographic reconstruction of the projected objected shown in Fig. 4. A small patch is magnified 
in the bottom left of each image, where this patch is indicated in the top left image. A total of 180 projections are available for the reconstruction 
(resulting in the reconstruction shown in the top left), and the remaining reconstructions shown are from limiting the data to only 18 projections, 
i.e., only 10% of the original data
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comparisons. To set up each test problem, a 1D piecewise 
quadratic polynomial (presumably ideal for order 3) was 
randomly generated over a 1024 stencil, and the entries 
in sampling matrix A ∈ R

1024×1024 and added noise to 
b were randomly generated from a mean zero Gaussian 
distribution. Overall, these results show that MHOTV 
moderately outperforms Daubechies wavelets in each 
case, and remaining comparisons between the order 

and number of levels are generally consistent between 
MHOTV and the wavelets.

For the single-level case (original TV and HOTV), the 
error generally increases for higher orders, contrary to the 
results in previous work [20]. Multiple scales show nota-
ble improvement for the higher orders, whereas they show 
a mild reduction in accuracy for order 1. The most benefit 
for both orders 2 and 3 is seen when using 3 levels, and 
order 2 actually outperforms order 3. Finally, using the 

Fig. 7  Reconstructions of phantom image from 29 tomographic projections. Orders 1 and 3 are shown for the regularization approaches. In the top 
right are the least squares and filtered backprojection (FBP) reconstructions for a baseline comparison
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fact that (12) gives us a way to compute fractional orders 
of the method, we present also the results from orders 1.5 
and 2.5. These are notably worse than the integer orders, a 
testament to the fact that these fractional-order derivates 
result in highly nonlocal differences.4

In the second set of results presented here, we ran a 
series of numerical simulations and measured the rate of 
successful recovery for each method as a function of the 
sampling rate. For each simulation, we randomly gener-
ated a piecewise polynomial of specified maximal degree 
over a 1024 stencil. This function was randomly sampled 
at the specified sampling rate precisely as in the previ-
ous 1D simulations in “Repeat of 1D simulations” section, 
where the sampling rate is defined by the number of sam-
ples divided by the number of grid points. Each regulari-
zation procedure was then used for reconstruction, and 
the ℓ2 error between the true function and reconstructed 
functions is determined. If the error was less than 10−2 , 
then the reconstruction was said to yield a successful recov-
ery. This simulation was carried out for each sampling rate 
in 20 trials, and the fraction of those 20 trials that yielded 
successful recovery is set as our probability of success. In 
each case, the generated test functions had five discontinu-
ities, and the location of the jumps were drawn randomly 
from a uniform distribution on the approximation interval.

No noise was added for these simulations, as this 
can make the likelihood of an exact recovery unlikely. 

Therefore, for this case, our general ℓ1 model as a modi-
fication of (1) is given by

and similarly for our specific MHOTV model in (8). This 
constrained data fitting problem is solved by reformu-
lating as an unconstrained problem with an augmented 
Lagrangian function [37, 44].

The results for these simulations are shown in Fig.  8. 
The results are separated in two ways, by the degree of 
the piecewise polynomial function that is sampled (vary-
ing along the rows) and the order of the regularization 
method (varying along the columns). In the first row 
are results for piecewise constant functions, in the sec-
ond row are piecewise linear functions, and in the third 
row are piecewise quadratic functions. In all cases, the 
MHOTV yields the highest probability of success, regard-
less of the degree of the polynomial or order of the regu-
larization, and the Daubechies wavelets success appears 
to generally lie somewhere between MHOTV and HOTV. 
The order 1 regularizations perform well only in the case 
of piecewise constant functions. On the other hand, the 
order 2 and 3 regularizations perform well for all function 
types, with order 2 again outperforming order 3 both with 
piecewise linear and quadratic signals.

(19)frec = arg min
f

�Tf �1 s.t. Af = b,

4  To observe these nonlocal stencils, one can compute the inverse Fourier 
transform of (12) for fractional orders k.

Table 1  Average relative reconstruction error over 100 simulations, as a function of the order of the method and number 
of levels in the multiscale approaches

The minimums for each SNR are emphasized in italics

SNR Order 1 Order 2 Order 3 Order 1.5 Order 2.5

mhotv Daub mhotv Daub mhotv Daub mhotv mhotv

2

1 level .1624 .1624 .2039 .1961 .2464 .2306 .1819 .2328

2 levels .1612 .1617 .1742 .1852 .2135 .2223 .1782 .2183

3 levels .1699 .1615 .1513 .1778 .1745 .2149 .1776 .1975

4 levels .2001 .1647 .1584 .1745 .1764 .2104 .2031 .2102

5

1 level .0864 .0864 .0971 .0914 .1293 .1090 .1025 .1287

2 levels .0858 .0857 .0761 .0838 .0946 .1004 .0987 .1172

3 levels .0926 .0864 .0668 .0805 .0766 .0982 .1016 .1133

4 levels .1100 .0894 .0742 .0801 .0828 .0981 .1186 .1276

10

1 level .0543 .0542 .0509 .0480 .0694 .0572 .0690 .0841

2 levels .0542 .0539 .0400 .0442 .0489 .0528 .0657 .0763

3 levels .0589 .0547 .0359 .0430 .0399 .0522 .0694 .0776

4 levels .0696 .0570 .0413 .0436 .0442 .0535 .0802 .0880
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Conclusions
HOTV circumvents the staircasing often observed in 
TV solutions and has been shown to be more effective 
for problems with fine features, where resolution can be 
improved by increasing the order of derivatives in the 
regularization term [8]. In some applications, however, 
high-order derivatives promote solutions with spurious 
local oscillations, as shown in Fig. 1. The MHOTV regu-
larization we introduce in this work is shown to mitigate 
unwanted oscillations while maintaining the resolution 
power of high-order regularization.

Although the theory for MHOTV reconstructions 
remains underdeveloped when compared to wavelets 
regularization [18, 30, 31, 45–48], our experiments indi-
cate that MHOTV can outperform wavelets regulari-
zation in practical applications. Figure  3, for instance, 
shows fewer spurious oscillations in the MHOTV recon-
struction than for Daubechies wavelets penalization, a 
feature that can also be observed for the 2D tomographic 
data and the experimental electron microscopy data. 
Moreover, our results show that MHOTV regularization 
requires fewer samples for successful reconstructions 
than for HOTV and wavelets. Computational efficiency 

Fig. 8  Probability of success for HOTV, MHOTV, and Daubechies wavelets at orders 1 (left column), 2 (middle column) and 3 (right column). A 
successful recovery is deemed whenever the relative ℓ2 error between the reconstruction and the true signal is less than 10−2 . Top row: piecewise 
constant functions. Middle row: piecewise linear functions. Bottom row: piecewise quadratic functions
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is achieved by performing the transformation in Fourier 
space or by matrix decomposition, as derived in “Fast cal-
culation of MHOTV operators” section. The associated 
matlab algorithms can be downloaded at [40], and some 
of the simulations in the proceeding section can also be 
found there.
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Appendix A: Proof of Theorem 1
Lemma 1  Let k , ℓ ∈ Z with 0 ≤ ℓ ≤ k. Then we have the 
following Vandermonde-like identity:

where p = ℓ/2 for ℓ even and p = (ℓ− 1)/2 for ℓ odd.

Proof of Lemma 1  Consider the polynomial 
p(x) = (1− x2)k(1+ x) , which can be factored as 
p(x) = (1− x)k(1+ x)k+1 . Both representations can be 
expanded using the binomial sum giving

by the first representation and

(20)(−1)p
(

k

p

)

=
ℓ

∑

j=0

(−1)j
(

k

j

)(

k + 1

ℓ− j

)

,

(21)

p(x) =
k

∑

j=0

(−x2)j
(

k

j

)

(1+ x) =
k

∑

j=0

(−1)j
(

k

j

)

[

x2j + x2j+1
]

by the second representation. Since (21) and (22) are 
equivalent for all x, the coefficients of any particular 
power of x are equivalent, which is the equality we set out 
to prove.�  �

Proof of Theorem 1  Statement 3 is an immediate conse-
quence of statement 2, since each matrix involved in the 
product is a convolution operator, and convolution oper-
ations are commutative and associative.

To prove statement 1, first observe that with increasing m, 
the nonzero entries in the rows of Pm become increasingly 
spaced, and it easy to see that the general resulting prod-
uct Pk+1

m  is essentially the same for each m with different 
spacings between the nonzero entries. Thus it is enough to 
show statement 1 for m = 1 . In the case k = 1 , this calcu-
lation can be checked directly. So suppose 1 holds for some 
arbitrary k. Then we need to show that (P1Pk+1

1 ) yields the 
desired result as defined by (16). It is fairly easy to see that 
the resulting entries of this product is simply the addition 
of two neighboring entries (modulo N) in Pk+1

1  . Any such 
entries added together trivially yields the desired values, 
and the proper location of these values is also easy to 
confirm.

Similar arguments used for statement 1 also apply to 
statement 2. First, we can consider an inductive approach, 
over m, where we will need to show �k ,2m+1 = Pk+1

m+1�k ,2m . 
Note that again due to the spacing of the entries of Pk+1

m  , 
the argument for any arbitrary m is parallel to that for 
m = 1 , with just different handling of the indices. Therefore 
the case for m = 1 suffices for the inductive step, and the 
case for m = 1 is an immediate consequence of the previ-
ous lemma.�  �

Appendix B: Definitions
If f , g ∈ R

N , then the convolution of f and g is given by

(22)p(x) =





k
�

j=0

(−x)j
�

k

j

�









k
�

j=0

xj
�

k + 1

j

�





(23)

(f ∗ g)m =
N−1
∑

n=0

fn gm−n, form = 0, 1, . . . ,N − 1,
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where for indices of g running outside of domain of g, a 
periodic extension of g is assumed. The discrete Fourier 
transform (DFT) of f is defined by

and the inverse discrete Fourier transform (IDFT) of f is 
given by

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 25 June 2018   Accepted: 6 October 2018

References
	1.	 Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise 

removal algorithms. Physica D Nonlinear Phenomena 60(1), 259–268 
(1992)

	2.	 Wei, S.-J., Zhang, X.-L., Shi, J., Xiang, G.: Sparse reconstruction for SAR 
imaging based on compressed sensing. Prog Electromagn Res 109, 
63–81 (2010)

	3.	 Bhattacharya, S., Blumensath, T., Mulgrew, B., Davies, M.: Fast encoding 
of synthetic aperture radar raw data using compressed sensing. In: IEEE 
2007 IEEE/SP 14th workshop on statistical signal processing, pp. 448–452 
(2007)

	4.	 Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of com-
pressed sensing for rapid MR imaging. Magn. Resonance Med. 58(6), 
1182–1195 (2007)

	5.	 Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order 
partial differential equation with applications to medical magnetic 
resonance images in space and time. IEEE Trans. Image Process. 12(12), 
1579–1590 (2003). https​://doi.org/10.1109/TIP.2003.81922​9

	6.	 Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for com-
pressed MR imaging using total variation and wavelets. In: IEEE confer-
ence on computer vision and pattern recognition, 2008. CVPR 2008, pp. 
1–8 (2008). https​://doi.org/10.1109/CVPR.2008.45873​91

	7.	 Leary, R., Saghi, Z., Midgley, P.A., Holland, D.J.: Compressed sensing 
electron tomography. Ultramicroscopy 131, 70–91 (2013). https​://doi.
org/10.1016/j.ultra​mic.2013.03.019

	8.	 Sanders, T., Gelb, A., Platte, R., Arslan, I., Landskron, K.: Recovering fine 
details from under-resolved electron tomography data using higher 
order total variation regularization. Ultramicroscopy 174, 97–105 (2017). 
https​://doi.org/10.1016/j.ultra​mic.2016.12.020

	9.	 Sanders, T., Dwyer, C.: Subsampling and inpainting approaches for elec-
tron tomography. Ultramicroscopy 182, 292–302 (2017)

	10.	 King, E.J., Kutyniok, G., Lim, W.-Q.: Image inpainting: theoretical analysis 
and comparison of algorithms. In: SPIE optical engineering + applica-
tions, pp. 885–802 (2013)

(24)

F(f )ξ =
N−1
∑

n=0

fne
−i2π
N nξ for ξ = 0, 1, . . . ,N − 1,

(25)

F
−1

(f )n = 1

N

N−1
∑

ξ=0

fξ e
i2π
N ξn for n = 0, 1, . . . ,N − 1.

	11.	 Eldar, Y.C., Kutyniok, G.: Compressed sensing: theory and applications. 
Cambridge University Press, New York (2012)

	12.	 Candès, E., Romberg, J.: Sparsity and incoherence in compressive sam-
pling. Inverse Probl. 23(3), 969 (2007)

	13.	 Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact 
signal reconstruction from highly incomplete frequency information. IEEE 
Trans. Inf. Theory 52(2), 489–509 (2006)

	14.	 Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image 
restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

	15.	 Blomgren, P., Chan, T.F., Mulet, P., Wong, C.-K., et al.: Total variation image 
restoration: numerical methods and extensions. ICIP 3, 384–387 (1997)

	16.	 Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imag-
ing Sci. 3(3), 492–526 (2010). https​://doi.org/10.1137/09076​9521

	17.	 Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for 
image recovery. IEEE Trans. Image Process. 21(5), 2559–2571 (2012)

	18.	 Starck, J.-L., Murtagh, F., Fadili, J.M.: Sparse image and signal processing: 
wavelets, curvelets, morphological diversity. Cambridge University Press, 
New York (2010)

	19.	 Mallat, S.: A wavelet tour of signal processing: the sparse way. Academic 
Press, Burlington (2008)

	20.	 Archibald, R., Gelb, A., Platte, R.B.: Image reconstruction from undersam-
pled Fourier data using the polynomial annihilation transform. J. Sci. 
Comput. 67, 1–21 (2015)

	21.	 Stefan, W., Renaut, R.A., Gelb, A.: Improved total variation-type regu-
larization using higher order edge detectors. SIAM J. Imaging Sci. 3(2), 
232–251 (2010)

	22.	 Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with 
discrete l1-type functionals. Commun. Math. Sci. 9(3), 797–827 (2011)

	23.	 Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization 
and related problems. Numer. Math. 76(2), 167–188 (1997)

	24.	 Unser, M., Fageot, J., Ward, J.P.: Splines are universal solutions of linear 
inverse problems with generalized TV regularization. SIAM Rev. 59(4), 
769–793 (2017)

	25.	 Steidl, G., Didas, S., Neumann, J.: Splines in higher order TV regularization. 
Int. J. Comput. Vision 70(3), 241–255 (2006)

	26.	 Scherzer, O., Weickert, J.: Relations between regularization and diffusion 
filtering. J. Math. Imaging Vision 12(1), 43–63 (2000)

	27.	 Steidl, G., Weickert, J.: Relations between soft wavelet shrinkage and total 
variation denoising. Joint pattern recognition symposium, pp. 198–205. 
Springer, Berlin (2002)

	28.	 Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of 
soft wavelet shrinkage, total variation diffusion, total variation regulariza-
tion, and sides. SIAM J. Numer. Anal. 42(2), 686–713 (2004)

	29.	 Kamilov, U., Bostan, E., Unser, M.: Wavelet shrinkage with consistent cycle 
spinning generalizes total variation denoising. IEEE Signal Process. Lett. 
19(4), 187–190 (2012)

	30.	 Guo, K., Labate, D.: Optimally sparse multidimensional representation 
using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)

	31.	 Kutyniok, G.: Shearlets: multiscale analysis for multivariate data. Springer, 
New York (2012)

	32.	 Saghi, Z., Benning, M., Leary, R., Macias-Montero, M., Borras, A., Midgley, 
P.A.: Reduced-dose and high-speed acquisition strategies for multi-
dimensional electron microscopy. Adv. Struct. Chem. Imaging 1(1), 1–10 
(2015)

	33.	 Sanders, T.: Parameter selection for HOTV regularization. Appl. Numer. 
Math. 125, 1–9 (2018)

	34.	 Daubechies, I.: Ten lectures on wavelets, vol. 61. SIAM, Philadelphia (1992)
	35.	 Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. Wavelets 

and statistics, pp. 125–150. Springer, New York (1995)
	36.	 Temizel, A., Vlachos, T., Visioprime, W.: Wavelet domain image resolution 

enhancement using cycle-spinning. Electron. Lett. 41(3), 119–121 (2005)
	37.	 Li, C., Yin, W., Jiang, H., Zhang, Y.: An efficient augmented lagrangian 

method with applications to total variation minimization. Comput. 
Optim. Appl. 56(3), 507–530 (2013). https​://doi.org/10.1007/s1058​
9-013-9576-1

https://doi.org/10.1109/TIP.2003.819229
https://doi.org/10.1109/CVPR.2008.4587391
https://doi.org/10.1016/j.ultramic.2013.03.019
https://doi.org/10.1016/j.ultramic.2013.03.019
https://doi.org/10.1016/j.ultramic.2016.12.020
https://doi.org/10.1137/090769521
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1007/s10589-013-9576-1


Page 18 of 18Sanders and Platte ﻿Adv Struct Chem Imag            (2018) 4:12 

	38.	 Goldstein, T., Osher, S.: The split Bregman method for l1-regularized 
problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). https​://doi.
org/10.1137/08072​5891

	39.	 Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algo-
rithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 
248–272 (2008). https​://doi.org/10.1137/08072​4265

	40.	 Sanders, T.: MATLAB Imaging algorithms: image reconstruction, restora-
tion, and alignment, with a focus in tomography. http://www.toby-sande​
rs.com/softw​are, https​://doi.org/10.13140​/RG.2.2.33492​.60801​. Accessed 
19 Aug 2016.

	41.	 Levin, B.D., Padgett, E., Chen, C.-C., Scott, M., Xu, R., Theis, W., Jiang, Y., Yang, 
Y., Ophus, C., Zhang, H.: Nanomaterial datasets to advance tomography in 
scanning transmission electron microscopy. Sci Data 3, 160041 (2016)

	42.	 Venkatakrishnan, S.V., Drummy, L.F., Jackson, M.A., De Graef, M., Simmons, 
J., Bouman, C.A.: A model based iterative reconstruction algorithm for 
high angle annular dark field-scanning transmission electron microscope 
(HAADF-STEM) tomography. IEEE Trans. Image Process. 22(11), 4532–4544 
(2013)

	43.	 Levin, B.D., Jiang, Y., Padgett, E., Waldon, S., Quammen, C., Harris, C., 
Ayachit, U., Hanwell, M., Ercius, P., Muller, D.A.: Tutorial on the visualization 
of volumetric data using tomviz. Microscopy Today 26(1), 12–17 (2018)

	44.	 Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 
4(5), 303–320 (1969)

	45.	 Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: 
Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22nd 
annual conference on computer graphics and interactive techniques, 
ACM, New York, pp. 173–182 (1995).

	46.	 Tenoudji, F.C.: Wavelets; multiresolution analysis. Analog and digital signal 
analysis. Springer, Switzerland (2016)

	47.	 Gao, H.-Y.: Wavelet shrinkage denoising using the non-negative garrote. J. 
Comput. Graph. Stat. 7(4), 469–488 (1998)

	48.	 Taswell, C.: The what, how, and why of wavelet shrinkage denoising. 
Comput. Sci. Eng. 2(3), 12–19 (2000)

https://doi.org/10.1137/080725891
https://doi.org/10.1137/080725891
https://doi.org/10.1137/080724265
http://www.toby-sanders.com/software
http://www.toby-sanders.com/software
https://doi.org/10.13140/RG.2.2.33492.60801

	Multiscale higher-order TV operators for L1 regularization
	Abstract 
	Introduction
	Discussion and contribution

	HOTV and multiscale generalizations
	MHOTV reconstruction model
	Relationship to Daubechies wavelets
	Repeat of 1D simulations

	Fast calculation of MHOTV operators
	Computation via Fourier transforms
	Fast computation via operator decomposition

	Application to multidimensional electron microscopy and tomography
	Quantitative results
	Conclusions
	Authors’ contributions
	References




