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Abstract 

Accurate quantum mechanical scanning transmission electron microscopy image simulation methods such as the 
multislice method require computation times that are too large to use in applications in high-resolution materials 
imaging that require very large numbers of simulated images. However, higher-speed simulation methods based on 
linear imaging models, such as the convolution method, are often not accurate enough for use in these applications. 
We present a method that generates an image from the convolution of an object function and the probe intensity, 
and then uses a multivariate polynomial fit to a dataset of corresponding multislice and convolution images to cor-
rect it. We develop and validate this method using simulated images of Pt and Pt–Mo nanoparticles and find that for 
these systems, once the polynomial is fit, the method runs about six orders of magnitude faster than parallelized CPU 
implementations of the multislice method while achieving a 1 − R2 error of 0.010–0.015 and root-mean-square error/
standard deviation of dataset being predicted of about 0.1 when compared to full multislice simulations.
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Background
As the uses of scanning transmission electron micros-
copy (STEM) in applications of high-resolution materi-
als imaging continue to expand, methods for simulating 
STEM images become increasingly important. Simulated 
images are often used to verify or provide quantitative 
interpretations for experimental STEM results in areas 
such as high-precision two-dimensional measurements 
[1], electron ptychography [2, 3], atomic electron tomog-
raphy [4–8], and three-dimensional imaging of point 
defects [9–13].

STEM images can be simulated in several ways. The 
simplest is the convolution method, an incoherent lin-
ear image model that convolves the probe point-spread 
function with simple atomic potentials for the specimen 
[14]. This method assumes that there is no dynamic scat-
tering and no interference between scattered and unscat-
tered electrons [15]. Although the convolution method 
allows images to be computed very quickly, it is only 

accurate for very thin samples, and so has seen limited 
use. The primary simulation methods for most specimens 
are the Bloch wave method and the multislice method, 
both of which are much more computationally expensive 
than the convolution method. The Bloch wave method 
requires a very large amount of storage when applied to 
complex structures, particularly those containing defects 
[14, 16, 17]. The multislice method [14, 18], often imple-
mented using fast Fourier transforms [19] is, therefore, 
more commonly used. The multislice method can require 
significant computation times, on the order of weeks 
of central processing unit (CPU) time [O(106 s/image), 
where we use O(X) to represent “on the order” of X] to 
simulate a typical STEM image [20]. With significant par-
allelization, this is not a major limitation when calculat-
ing just a few images. However, some recent approaches 
to structure determination require thousands or even 
millions of images to be simulated. One such approach 
is the exploration of configuration space required for 
inverse structure determination from images [21]. For 
example, Yu et  al. used a genetic algorithm to find a 
structure that best fits an experimental STEM image 
while minimizing the particle energy [22]. Large numbers 
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of multislice simulations may also be needed to verify 
results of calculations performed on large STEM datasets 
as, for example, in electron tomography [8, 11]. Large 
simulated STEM datasets are also increasingly used to 
train machine learning models for more robust and com-
putationally efficient STEM simulations: for example, Xu 
et  al. used several thousand Bloch wave simulations to 
train a series of convolutional neural networks for high-
throughput analysis of four-dimensional STEM data [23].

Many efforts have been made to reduce the calcula-
tion time of the multislice method. Codes are available 
that are parallelized to run on multiple CPUs [24, 25], 
graphics processing units (GPUs) [26–29], or both [20, 
30]. Through efficient parallelization and use of GPUs, 
the necessary computation time for a multislice simula-
tion can typically be reduced by 1–2 orders of magni-
tude compared to a single CPU calculation [to O(104 s/
image)]. In work by Pryor et al. four GPUs are required to 
achieve a speedup of about two orders of magnitude [20]. 
Ophus et al. achieved decreases in simulation computa-
tion times by combining elements of the Bloch wave and 
multislice methods in an approach known as PRISM [31]. 
In this approach, a Fourier interpolation factor can be 
adjusted to trade accuracy for computation speed. When 
GPU parallelized and with the interpolation factor set to 
prioritize speed, PRISM is approximately 3–4 orders of 
magnitude faster than a single CPU multislice implemen-
tation [O(103 s/image)] [20].

Yu et  al. developed a Z-contrast STEM simulation 
method for gold nanoparticles that applied a pixel-by-
pixel correction to images generated using the convolu-
tion method [22]. A high-order polynomial (the exact 
order is not given in the paper) was fitted to a dataset of 
STEM pixel intensities from a set of corresponding mul-
tislice and convolution images of unit cells of varying 
thickness. The polynomial effectively corrected the con-
volution image to better approximate the more accurate 
multislice image. However, this one-to-one pixel intensity 
correction has limited accuracy and the potential to ben-
efit from additional information that may be available in 
the convolution image.

In this work, we generalize and extend the approach 
of Yu et al. by developing and assessing the accuracy and 
computation time of several one-to-one and many-to-
one pixel intensity corrections. The model in this work 
is based on a multivariate polynomial fit, which is simple 
to understand and extremely rapid to fit and apply. This 
is just one of many possible approaches that could be 
used, including Fourier or spline regression, kernel ridge 
regression, Gaussian process regression, decision tree 
regression, standard neural network models, and deep 
learning convolution network models. These other tech-
niques may yield additional accuracy but were beyond 

the scope of this initial investigation and represent prom-
ising pathways for future work.

The models used as corrections are trained on data-
sets of matched multislice and convolution images of 
Pt and Pt–Mo nanoparticles with varying amorphous/
crystalline character. For the systems we tested, the best 
models result in simulated STEM images with an aver-
age cross validation root-mean-square intensity error 
of 0.1 (reported as a fraction of the standard deviation 
of the total data set being predicted) and cross valida-
tion 1 − R2 (where R2 is the coefficient of correlation) 
error of approximately 0.01–0.015 when compared to 
full multislice simulations, comparable to other high-
speed multislice approximation methods such as PRISM. 
A convolution image can be generated and a trained 
model applied to it in just O(10−2) s of CPU time on a 
common desktop processor without the use of any paral-
lelization or GPUs. Therefore, this method can simulate 
STEM images approximately five orders of magnitude 
faster than PRISM (when PRISM is run to yield a com-
parable accuracy to our model) and six orders of mag-
nitude faster than GPU-parallelized multislice with a 
modest loss of accuracy. However, the regression model 
is system dependent, and must be fitted for each system 
of interest using a training dataset consisting of convolu-
tion images and corresponding multislice images of sam-
ples representative of the system. Thus, it is best suited 
for applications which require large numbers of moder-
ately accurate Z-contrast STEM simulations of similar 
systems.

Methods
All the data sets and codes used in this study, including 
multislice simulated images and machine learning-esti-
mated images, are available on Figshare at https​://doi.
org/10.6084/m9.figsh​are.74289​20.

Dataset
To develop and validate the method, we generated cor-
responding convolution and multislice simulated images 
for sets of Pt nanoparticles, Pt–Mo nanoparticles 
with ~ 5% Mo, and Pt–Mo nanoparticles with ~ 50% Mo. 
Each set contained nanoparticles of similar size but vary-
ing structure, ranging from purely amorphous to purely 
crystalline. The Pt set contained 20 nanoparticles, each 
containing 561 Pt atoms. The Pt–Mo 5% set contained 20 
nanoparticles, each containing 557 Pt atoms and 29 ran-
domly distributed Mo atoms. The Pt–Mo 50% set con-
tained 18 nanoparticles, each containing 281 Pt atoms 
and 280 randomly distributed Mo atoms.

Multislice images of each particle were generated using 
code from Kirkland [14] using 16 phonon configurations. 
Images were simulated for the U. Wisconsin Cs-corrected 
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Titan (S)TEM. The simulations used 200 kV, a 24.5 mrad 
convergence angle, and collection angle from 50 to 150 
mrad. Aberrations were set to typical values a Cs-cor-
rected STEM, with Cs = 1.2  μm. The multislice simula-
tion images were embedded in a uniform background 
and convolved with a Gaussian with width of 88 pm, set 
by matching simulated images to experiments [1]. We 
cropped the convolved images by seven pixels on each 
side to eliminate edge artifacts present due to the embed-
ding and convolution and to match the final dimensions 
of the multislice images.

Convolution images were generated according to:

where r is a 2D vector in the image plane, I(r) is the 
image intensity,

is the transmission function of the N atoms each at posi-
tion ri, and includes information about the atomic poten-
tial of the specimen (given by Zi , the atomic number of 
the atom, to the 1.7 power). Rutherford scattering from 
the bare nuclear charge predicts a Z2 dependence of the 
intensity, but the exponent is reduced by core electron 
screening [14], and depends on the detection collection 
angles [32]. The value of 1.7 is an approximate value that 
represents a compromise between these many factors 
but the absolute scattered intensities cannot be predicted 
by Eq. 2 for any value of the exponent. It is possible that 
the model developed here could be improved using a dif-
ferent exponent but this does not seem highly likely to 
us and would lead to a much larger search space in the 
study. Therefore, we have not made a systematic study of 
different exponents but note that this could be an inter-
esting topic for future work.

The microscope point spread function (PSF) is mod-
eled as a normalized Gaussian with width σ = 0.38 Å [14, 
22].

PSF(r) accounts for the incoherent electron source and 
coherent aberrations [22]. A normalized Gaussian is 
a reasonable approximation for the probe in this case 
because for the U. Wisconsin Cs-corrected Titan (S)TEM, 
the incoherent Gaussian source size is larger than the 
calculated coherent size without aberrations. Changes in 
microscope parameters may necessitate a more compli-
cated wave function in the convolution calculation of the 
STEM image. Note that any changes in the convolution 
wave function, even for the same multislice data, would 
likely require refitting the model.

(1)I(r) = R(r,Z)⊗ PSF(r),

(2)R(r,Z) =
N
∑

i=1

Z1.7
i δ(r − ri)

(3)PSF(r) = 1

σ
√
2π

exp
(

− 1
2

(

r−ri
σ

)2
)

The probe positions (pixel locations) in the multislice 
and convolution calculations were set to be identical. 
Images contain uniform grids of M × N pixels, where M 
and N range from 209 to 259. The pixels are square and 
have an edge length of 0.1 Å. The number of grid points 
along each direction varies somewhat because the images 
sizes are set to just match the particle sizes and the parti-
cle sizes vary.

Figure 1 shows three examples of the convolution and 
multislice images produced from Pt nanoparticle models. 
The complete set of all images is provided in Additional 
file  2. The pixel intensity for the multislice simulations 
is normalized so that the total incident electron beam 
intensity is unity. The convolution simulations are scaled 
by the total integrated scattering cross section of the 
nanoparticle being modeled [33] which produces values 
typically about one order of magnitude less than the mul-
tislice simulations. This scaling is used to bring the over-
all convolution and multislice intensity scales into closer 
agreement, but is not essential to the quality of the fit.

The pixel intensity values in the images constitute the 
datasets used to create our models. Each image is roughly 
250 × 250 pixels in dimension; so, each image contains 
roughly 62,500 pixels and each dataset of 18–20 images 
contains roughly 1.25 million convolution data points 
and 1.25 million corresponding multislice data points.

The means and standard deviations of our datasets are 
shown in Table 1. When calculating cross validation frac-
tional root-mean-square error, we calculate the fraction 
of the standard deviation of the applicable data set [see 
Eq. (4)]; so, these values are used in many of the statistics 
given below.

Fig. 1  Convolution and multislice images of Pt nanoparticles
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Model assessment
We use cross validation to assess our models. We split 
our dataset into training and validation sets, fit the model 
using the training set, and use it to predict images in the 
validation set. We assign data to the validation and train-
ing sets in three ways: by randomly assigning images, 
randomly assigning 7 × 7 blocks of pixels, and randomly 
assigning individual pixels. We calculate cross valida-
tion (CV) error by comparing the predicted intensity to 
the multislice intensity for each data point in the valida-
tion set. This process is repeated a specified number of 
times with different validation sets. We report pixel-wise 
CV fractional root-mean-square (RMS) error and CV 
1 − R2 error, where R2 is the coefficient of determination 
between the predicted and multislice pixel intensities 
[34]. Results reported are computed in a single calcula-
tion over all pixels in all cross validation sets.

Fractional RMS error ( EFRMS ) for a given predicted 
data set (which we will call the target set) is calculated 
as per Eq. 4, where n is the number of pixels in the tar-
get set, ypredi and yactuali are the predicted and multislice 
intensity values, respectively, of pixel i , ERMS is the root 
mean squared error, and yactual and σactual are the average 
value and standard deviation of yactual over all pixels in 
the target set.

Results reported in the main text of this paper are for 
twofold cross validation with image-based subset assign-
ment, repeated twice with different validation and train-
ing subset assignments (i.e., 4 total validation data sets 
each of size 9–10 images, or 50% of our total data). For 
these two twofold cross validations on a full data set with 
N elements, the target set used in Eq.  4 would be two 
copies of all the N elements. A similar approach of using 
the full set of data across all left out groups as the target 
data to calculate standard deviations in Eq. (4) is used for 
other fractional CVs discussion in Additional file 1.

We chose to report the fractional RMS error as 
opposed to the raw RMS error as the intensities in the 
data being modeled have a complex normalization 

(4)EFRMS =
ERMS=

√

∑i=n
i=1 (ypredi

−yactuali
)2

n

σactual=

√

∑i=n
i=1

(

yactuali
−yactual

)2

n

that makes it difficult to interpret the implications of 
the direct RMS. EFRMS is easy to interpret as a value 
of one is obtained for a model that simply returns the 
mean of the target set. Thus, values of significantly less 
than one suggest a model is meaningfully capturing 
the ways the target set is varying. In addition, we note 
that for our images, this quantity can be rewritten as 
EFRMS = ERMS/yactual/σactual/yactual . In this equation, the 
fraction in the numerator is the error normalized to the 
average intensity, and the fraction in the denominator is 
the contrast. Thus, EFRMS is also the ratio of the intensity 
normalized error to the contrast, which is a common way 
to consider the scale of errors in images.

In Additional file  1: Section S2.3, we show results of 
twofold cross validation for pixel-based and block-based 
subset assignments. In Additional file 1: Section S2.2, we 
show results of leave-out-X cross validation for selected 
values of X greater than 50% with image-based subset 
assignment to demonstrate model performance with 
training sets smaller than 10 images. These results are 
generally similar to those of image-wise twofold cross 
validation in the main text when the training set size is 
five images (~ 25% of our data) or larger. We also present 
plots of differences between predicted images and mul-
tislice images for selected images in the main text, with 
additional images in Additional file 2.

All regressions and analysis reported in this work were 
performed in the Python 3 programming environment. 
Regressions were performed using the scikit-learn pack-
age [35], version 0.18.1.

Timings given in this work are for the specific hardware 
used in this study. All regression and prediction calcula-
tions were performed on hyperthreaded cores on CPUs 
of 2.1–2.7  GHz (20,000–30,000 million instructions per 
second). No parallelization was used.

Regression
We performed multivariate polynomial regressions with 
the convolution image pixel intensities as the independ-
ent variable and the multislice pixel intensities as the 
dependent variable. More precisely, for a given multislice 
pixel, the intensities of a group of pixels consisting of the 
corresponding convolution pixel and a number of sur-
rounding pixels were used as input (see Fig. 2). We refer 
to this group of pixels as the input pixel grid. The fit is not 
location dependent. A single set of coefficients is learned 
for all possible inputs.

The input pixel grid size is defined by s , the grid side 
length measured in pixels. s must be an odd integer 
greater than or equal to 1. Pixels at the outer edges of the 
images could not be predicted in this way when s > 1 due 
to the lack of necessary nearest neighbors on one or two 
sides. We did not attempt to predict these edge pixels; so, 

Table 1  Summary statistics of multislice data

Mean Standard deviation

Pt 0.02689 0.01730

Pt–Mo (5% Mo) 0.02560 0.02184

Pt–Mo (50% Mo) 0.01653 0.01065
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the predicted images were cropped by s−1
2  pixels on all 

sides.
The polynomials we tested vary in s , degree, inclu-

sion of a logarithmic term, and inclusion of interaction 
terms. These variables are the adjustable parameters, or 
hyperparameters, of the regression model. Throughout 
this work, we use the word “term” to refer each element 
of the polynomial with a coefficient that is found via the 
fitting process. Hyperparameters were explored that 
create models with between 2 and 3654 terms, includ-
ing the constant term. Additional file  1: Table  S1 lists 
the hyperparameters and number of terms for each pol-
ynomial tested.

Inclusion of a logarithmic term was tested to attempt 
to capture some of the different scaling of multislice 
and convolution intensity as atoms are added to a col-
umn. Convolution intensity scales linearly as atoms 
are added to a column, while multislice intensity scales 
nonlinearly. Although a Taylor series can approximate 
a local logarithm when enough terms are included, we 
do not use polynomial terms of high enough order to 
ensure that they could adequately capture a logarithmic 
relationship.

We have not used any feature selection approaches 
(e.g., forward selection or principal component analy-
sis) to reduce the number of descriptors. We felt that 
such selections could lead to removal of terms in ways 
that did not make physical sense. In particular, we 
assume that that the model should always include all 
powers up to the highest degree polynomial used as 
the behavior of the Y(X) function is fairly smooth and 
seems unlikely to actually be dominated by higher pow-
ers without lower ones being present. However, this 
assumption is untested, and more exploration of ways 
to reduce the feature set is of interest for future work.

Figure  3 shows the input pixel grid required to esti-
mate the intensity of a pixel with coordinates (m, n) . 
The side length of the input pixel grid is represented by 
s , which must be an odd integer greater than or equal 
to 1. Pixels in the grid have coordinates 

(

i, j
)

 where:

For ease of reference, we re-index these pixel intensity 
values as xr , where

for a pixel with some set of coordinates 
(

i, j
)

 . The center 
pixel, with coordinates (m, n) , has index r = c = s2−1

2 .The 
general form of the polynomial can be written as

where

Here, we define the following variables: p = s2 is the 
total number of pixels in the input pixel grid, d is the 
degree of the polynomial being fit, xp = log (xc) is an 
input term representing the logarithm of intensity of 

the center pixel, α =
{

0 if logarithmic term excluded
1 if logarithmic term included

 , 

β =
{

0 if interaction terms excluded
1 if interaction terms included

 , and akr , akp , akq , 

and a0 are regression coefficients. a0 is a constant term 
and for the other coefficients the first index gives 
degree of the term being fit and the second index gives 
either the corresponding pixel [in Eq.  (7)] or is the 
index of the term being fit [in Eq. (8)]. The first term in 
Eq. 7 is the single pixel intensity terms, excluding those 
due to the logarithmic input term. The second term is 
the single pixel intensity logarithmic terms. The third 
term, adapted from the expression for the complete 
homogenous symmetric polynomials [36], represents 
the interaction terms and involves all possible products 
of all included powers and logarithmic terms for all the 
pixel intensities.

(5)
i ∈

[

m− s−1
2 ,m+ s−1

2

]

, j ∈
[

n− s−1
2 , n+ s−1

2

]

(6)

r = s

(

i −
(

m−
s − 1

2

))

+ j −
(

n−
s − 1

2

)

=
s2

2
− s(i −m)+ j − n−

1

2

(7)
yc =

d
∑

k=1

p−1
∑

r=0

akrx
k
r + α

d
∑

k=1

akpx
k
p

+β
d
∑

k=2

gk
(

x0, x1, . . . , xp
)

+ a0

(8)

gk
(

x0, x1, . . . , xp
)

=
∑

b0 + b1 + · · · + bp = k
0 ≤ bi ≤ k − 1
bp = 0if α = 0

akqx
b0
0 x

b1
1 . . . x

bp
p

Fig. 2  Input pixel grid. Shading indicates grid size for varying side 
length s 
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Results and discussion
Accuracy
As shown in Fig.  4, the accuracy of this approach is 
dependent on the number of terms included in the 
model. The best models yield a 1 − R2 twofold cross vali-
dation (CV) error of approximately 0.01–0.015, similar 
to that of relatively high-speed PRISM simulations [31]. 
The CV fractional RMS error of these same models is 

approximately 0.1. CV fractional RMS error results for 
image-based twofold cross validation are reported in 
Additional file 1: Section S2.1. Error decreases sharply as 
the number of terms increases from two to approximately 
fifty. The marginal improvement gained per term added 
decreases significantly for models of above approximately 
fifty terms, and approaches zero for models above about 
400 terms.

For models with more than approximately 200 terms, 
results for Pt, Pt–Mo 5%, and Pt–Mo 50% nanoparticles 
were similar. For models with less than 200 terms, results 
for Pt–Mo 50% were generally better than those for Pt 
and Pt–Mo 5%. The difference was particularly signifi-
cant for models with less than 50 terms.

The number of terms is impacted by both polynomial 
degree and grid side length s. We assess convergence of 
errors with respect to each of these variables separately 
in Additional file 1: Sections S2.4 and S2.5 and find that s 
values above 5 and polynomial degree above 3 confer lit-
tle to no additional improvement in accuracy.

We take as optimal the model which appears to give 
the lowest CV 1 − R2 error within the general uncer-
tainty of the models while simultaneously using a few 
terms as possible. This model is a second-degree poly-
nomial with s = 5, a logarithmic term, and all interac-
tion terms (378 terms total). It is marked with a dashed 

Fig. 3  Illustration of input pixel range and re-indexing of input pixels

Fig. 4  Twofold cross validation 1 − R2 error as a function of 
number of terms in the regression model (log scale) for Pt and 
Pt–Mo nanoparticles. Dashed box marks the model identified as 
approximately optimal and used for other figures in this study
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box in Fig.  4. This model would be a good choice for 
many applications, including the inverse structure 
determination problem addressed by Yu et al. Figure 5 
shows pixel intensity parity plots (multislice pixel val-
ues vs predicted pixel values) for this model. Parity 
plots for all other models tested can be found in Addi-
tional file 2. The maximum intensity in the Pt–Mo 5% 
data is larger than that in the Pt data because the Pt–
Mo nanoparticles were thicker than the Pt nanoparti-
cles. The maximum intensity in the Pt–Mo 50% data 
is somewhat lower than in both the Pt and Pt–Mo (5% 
Mo) data because Mo has a lower scattering cross sec-
tion than Pt. The CV 1 − R2 errors for these cases are 
0.010, 0.012, and 0.014 for Pt, Pt–Mo 5%, and Pt–Mo 
50%, respectively, demonstrating no large differences 
between compositions.

Figure 6 shows images of amorphous and crystalline 
Pt, Pt–Mo 5%, and Pt–Mo 50% nanoparticles created 
using the multislice method and the 378-term model. 
Two maps of the intensity differences between the pre-
dicted and multislice images for each nanoparticle are 
also shown in Fig. 6: one on the same intensity scale as 
the multislice image and one on a reduced scale. Quali-
tatively, the predicted images appear very similar to 
the corresponding multislice images and the difference 
plots on the scale of the original images look nearly 
uniform, indicating small errors compared to the over-
all multislice intensity. The difference images do reflect 
the atomic structure, with the largest differences typi-
cally occurring on the atomic columns. The on-column 
intensity has the strongest non-linear contribution 
from probe channeling and dynamical diffraction; so, 
this is perhaps an unsurprising result. Additional dif-
ference plots for this model are included in Additional 
file 2. Figure S7 shows error as a function of pixel inten-
sity for the 378-term model and confirms that generally, 

error magnitude tends to be larger for higher-intensity 
pixels.

Speed
Once the training data set has been calculated using the 
multislice and convolution approaches, this STEM simu-
lation method requires two steps: fitting and prediction. 
For each system of interest, the model must first be fit to 
a training dataset of convolution and corresponding mul-
tislice images. This training dataset did not require very 
many images for the systems tested in this work. In the 
main text, we use a training set of nine–ten images to 
successfully simulate images of Pt and Pt–Mo nanopar-
ticles of varying crystalline structures and topologies. In 
Additional file 1: Section S2.2, we use leave-out-X cross 
validation to show that training datasets as small as five 
pairs of images generally yield similar results. The com-
putation time for the fitting step depends on the size 
of the training dataset and the number of terms in the 
model. It ranges between O(10−2) s (for a 2-term model 
and 3-image training set) and O(104) s (for a 3654-term 
model and 18-image training set) for the systems stud-
ied here. The 378-term model, which Fig. 4 shows yields 
near-maximum accuracy, can be fitted to our nine- to 
ten-image training sets in O(102) seconds. This fitting 
step need only be completed once per system.

Once the model is fit, the time taken to predict an 
image is negligible. For our structures and output image 
size (see “Methods” section) generating a convolu-
tion image takes on order 10−2 s on one CPU. Applying 
a model to a single point in a convolution image takes 
between O(10−9) s for a two-term model and O(10−6) 
s for a 3654-term model on one CPU. As our images 
have approximately 62,500 points, applying the model 
to an entire convolution image therefore takes between 
O(10−5) s for a two-term model and O(10−2) s for a 3654-
term model on one CPU. Thus, the application of the 

Fig. 5  Parity plots for the 378-term model. Red line represents y = x. a Pt. b Pt–Mo 5% c Pt–Mo 50%
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models tested is comparable to or faster than the genera-
tion of the convolution image, and the total prediction 
time of this approach for our structures is approximately 
five orders of magnitude faster than comparably accurate 
PRISM simulations [20].

Simple scaling arguments support that for models with 
O(103) terms or less, the application step will consistently 

be comparable to or faster than the convolution image 
generation step for different size nanoparticles and 
images of different numbers of pixels. The convolution 
image calculation is implemented by fast Fourier trans-
form (FFT) followed by multiplication and then back-
transform. The FFT and back-transform are expected 
to dominate its computational cost. Therefore, the time 

Fig. 6  Plots of multislice, predicted, and difference (multislice minus predicted) images of Pt, Pt–Mo 5% and Pt–Mo 50% nanoparticles. Predicted 
images are calculated using the 378-term model. One difference plot is displayed on the scale of the corresponding multislice image and one 
is displayed on a reduced scale to better show contrast. Top two rows: Pt. Center two rows: Pt–Mo 5%. Bottom two rows: Pt–Mo 50%. Left two 
columns show crystalline nanoparticles. Right two columns show amorphous nanoparticles
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for the convolution image calculation scales in the same 
manner as the time for an FFT, or O(Nplog(Np)) with the 
number of pixels in the image Np = Nx ∗ Ny , where Nx 
is the x-dimension of the image in pixels and Ny is the 
y-dimension of the image in pixels. The convolution 
image calculation also scales linearly with the number of 
atoms in the system being modeled, Na . Time required 
for application of the model scales linearly with the num-
ber of pixels in the image to which the model is applied 
and is independent of the number of atoms in the system. 
Thus, the ratio of the total time for applying a model to a 
convolution image over the time required to generate the 
convolution image scales as O(Nalog(Np)). Based on the 
timings in this work, this ratio will be much greater than 
one for any reasonably sized system of even a few atoms 
or image of just a few pixels, and will clearly only increase 
for larger systems or images with more pixels.

Because the computation time for the convolution 
image generation step is comparable to or greater than 
the computation time for the model application step for 
models up to O(103) terms, the total prediction time for 
this method will be approximately the same regardless 
of number of terms included in the model for models 
up to O(103) terms. However, larger models take more 
time and memory to fit than smaller models, especially 
when the training set is large, and may be more prone to 
overfitting errors. In general, we strive to use the smallest 
model possible without sacrificing accuracy.

We emphasize that the method presented here is not 
a general method for calculating STEM images. The 
trained model is only valid in the domain of the training 
data. We have not explored the limits of applicability of 
our models beyond the training data set, but introducing 
new elements or new crystal structures that are not in the 
training data set is very likely to be beyond the validity of 
the model. It will always be better to train a new model 
for a new set of structures than to attempt to expand or 
adjust an existing model beyond its training data, espe-
cially since only modest quantities of training data are 
required. We have also not explored the performance of 
this method for systems other than the three tested. It is 
likely that accuracy will differ for different materials and 
for systems containing different features, especially fea-
tures that can modify the electron channeling behavior 
in the multislice simulation, such as interfaces. Exploring 
the limits of applicability of this method is an important 
task for future work.

Overall, this approach is best suited for applications 
where many images of similar structure and composi-
tions (e.g, catalyst nanoparticles whose variation in com-
position and morphology are well represented in the 
training set) must be simulated. In this case, the over-
head time taken to generate a training dataset and fit the 

model will be dominated by the time saved by significant 
speedup of many individual simulations.

Conclusion
We have presented a STEM image simulation method 
that combines a convolution of the probe point-spread 
function and the atomic potentials with a multivariate 
regression. The method involves generating a training 
data set of corresponding multislice and convolution 
images for a set of atomic models, then fitting a multi-
variate function to predict the multislice result from the 
convolution result. After fitting to the system of interest, 
this method can be used to simulate images with approx-
imately 0.01–0.015 twofold cross validation 1 − R2 error 
and 0.1 twofold cross validation fractional root-mean-
square error in just O(10−2 s/image) on a single 2.1–
2.7 GHz CPU. Once fitted, this method is several orders 
of magnitude faster than other STEM simulation tech-
niques of comparable accuracy and is particularly use-
ful for applications that require large numbers of image 
simulations of similar structures.
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