Crewe, A.V.: Scanning transmission electron microscopy. J. Microsc. 100(3), 247–259 (1974)
Article
Google Scholar
Nellist, P.D.: Scanning transmission electron microscopy, pp. 65–132. Springer, New York (2007)
Google Scholar
Batson, P., Dellby, N., Krivanek, O.: Sub-ångstrom resolution using aberration corrected electron optics. Nature 418(6898), 617–620 (2002)
Article
Google Scholar
Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263–270 (2009)
Article
Google Scholar
Pennycook, S.J.: The impact of stem aberration correction on materials science. Ultramicroscopy. 180, 22–33 (2017). doi:10.1016/j.ultramic.2017.03.020
Pelz, P.M., Qiu, W.X., Bücker, R., Kassier, G., Miller, R.: Low-dose cryo electron ptychography via non-convex bayesian optimization. arXiv preprint arXiv:1702.05732 (2017)
Van den Broek, W., Koch, C.T.: Method for retrieval of the three-dimensional object potential by inversion of dynamical electron scattering. Phys. Rev. Lett. 109(24), 245502 (2012)
Article
Google Scholar
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I., Voyles, P.M.: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155 (2014)
Article
Google Scholar
Mevenkamp, N., Binev, P., Dahmen, W., Voyles, P.M., Yankovich, A.B., Berkels, B.: Poisson noise removal from high-resolution stem images based on periodic block matching. Adv. Struct. Chem. Imaging. 1(1), 3 (2015)
Article
Google Scholar
Ophus, C., Ciston, J., Pierce, J., Harvey, T.R., Chess, J., McMorran, B.J., Czarnik, C., Rose, H.H., Ercius, P.: Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry. Nat. Commun. 7 (2016). doi:10.1038/ncomms10719
van den Bos, K.H., De Backer, A., Martinez, G.T., Winckelmans, N., Bals, S., Nellist, P.D., Van Aert, S.: Unscrambling mixed elements using high angle annular dark field scanning transmission electron microscopy. Phys. Rev. Lett. 116(24), 246101 (2016)
Article
Google Scholar
Miao, J., Ercius, P., Billinge, S.J.L.: Atomic electron tomography: 3D structures without crystals. Science 353(6306), 2157–2157 (2016). doi:10.1126/science.aaf2157
Article
Google Scholar
Xu, R., Chen, C.-C., Wu, L., Scott, M., Theis, W., Ophus, C., Bartels, M., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R.: Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14(11), 1099–1103 (2015)
Article
Google Scholar
Yang, Y., Chen, C.-C., Scott, M., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., Zhou, J.: Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542(7639), 75–79 (2017)
Article
Google Scholar
Scott, M.C., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J.: Electron tomography at 2.4-angstrom resolution. Nature 483(7390), 444–447 (2012). doi:10.1038/nature10934
Article
Google Scholar
Chen, C.-C., Zhu, C., White, E.R., Chiu, C.-Y., Scott, M.C., Regan, B.C., Marks, L.D., Huang, Y., Miao, J.: Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496(7443), 74–77 (2013). doi:10.1038/nature12009
Article
Google Scholar
Cowley, J.M., Moodie, A.F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10(10), 609–619 (1957)
Article
Google Scholar
Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23(1), 77–96 (1987)
Article
Google Scholar
Ishizuka, K., Uyeda, N.: A new theoretical and practical approach to the multislice method. Acta Crystallogr. Sect. A Cryst. Phys. Diffr Theor. Gen. Crystallogr. 33(5), 740–749 (1977)
Article
Google Scholar
Ishizuka, K.: A practical approach for stem image simulation based on the FFT multislice method. Ultramicroscopy. 90(2), 71–83 (2002)
Article
Google Scholar
Kirkland, E.J.: Advanced computing in electron microscopy, Second edition. Springer, New York (2010)
Stadelmann, P.: Ems-a software package for electron diffraction analysis and hrem image simulation in materials science. Ultramicroscopy 21(2), 131–145 (1987)
Article
Google Scholar
Stadelmann, P.: Image analysis and simulation software in transmission electron microscopy. Microsc. Microanal. 9(S03), 60–61 (2003)
Google Scholar
Kilaas, R.: MacTempas a program for simulating high resolution TEM images and diffraction patterns. http://www.totalresolution.com/
Koch, C.T.: Determination of core structure periodicity and point defect density along dislocations. Arizona State University (2002). http://adsabs.harvard.edu/abs/2002PhDT........50K
De Graef, M.: Introduction to conventional transmission electron microscopy. Cambridge University Press, New York (2003)
Book
Google Scholar
Zuo, J., Mabon, J.: Web-based electron microscopy application software: Web-emaps. Microsc. Microanal. 10(S02), 1000 (2004)
Article
Google Scholar
Carlino, E., Grillo, V., Palazzari, P.: Accurate and fast multislice simulations of haadf image contrast by parallel computing. Microsc. Semicond. Mater. 2007, 177–180 (2008)
Google Scholar
Grillo, V., Rotunno, E.: STEM_CELL: a software tool for electron microscopy: part I-simulations. Ultramicroscopy. 125, 97–111 (2013)
Article
Google Scholar
Rosenauer, A., Schowalter, M.: Stemsim—new software tool for simulation of stem haadf z-contrast imaging. Microsc. Semicond. Mater. 2007, 170–172 (2008)
Google Scholar
Walton, S.K., Zeissler, K., Branford, W.R., Felton, S.: Malts: a tool to simulate lorentz transmission electron microscopy from micromagnetic simulations. IEEE Trans. Magn. 49(8), 4795–4800 (2013)
Article
Google Scholar
Bar-Sadan, M., Barthel, J., Shtrikman, H., Houben, L.: Direct imaging of single au atoms within gaas nanowires. Nano Lett. 12(5), 2352–2356 (2012)
Article
Google Scholar
Lobato, I., Van Dyck, D.: Multem: a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with cuda. Ultramicroscopy. 156, 9–17 (2015)
Article
Google Scholar
Lobato, I., Van Aert, S., Verbeeck, J.: Progress and new advances in simulating electron microscopy datasets using multem. Ultramicroscopy. 168, 17–27 (2016)
Article
Google Scholar
Van den Broek, W., Jiang, X., Koch, C.: FDES, a GPU-based multislice algorithm with increased efficiency of the computation of the projected potential. Ultramicroscopy. 158, 89–97 (2015)
Article
Google Scholar
Cosgriff, E., D’Alfonso, A., Allen, L., Findlay, S., Kirkland, A., Nellist, P.: Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: elastic scattering. Ultramicroscopy. 108(12), 1558–1566 (2008)
Article
Google Scholar
Forbes, B., Martin, A., Findlay, S., D’alfonso, A., Allen, L.: Quantum mechanical model for phonon excitation in electron diffraction and imaging using a born-oppenheimer approximation. Phys. Rev. B. 82(10), 104103 (2010)
Article
Google Scholar
Oelerich, J.O., Duschek, L., Belz, J., Beyer, A., Baranovskii, S.D., Volz, K.: Stemsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy. 177, 91–96 (2017)
Article
Google Scholar
Ophus, C.: A fast image simulation algorithm for scanning transmission electron microscopy. Adv. Struct. Chem. Imaging. 3(1), 13 (2017)
Article
Google Scholar
Yao, Y., Ge, B., Shen, X., Wang, Y., Yu, R.: Stem image simulation with hybrid cpu/gpu programming. Ultramicroscopy. 166, 1–8 (2016)
Article
Google Scholar
Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE. 93(2), 216–231 (2005)
Article
Google Scholar
NVIDIA: cuFFT. https://developer.nvidia.com/cufft
Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear algebra. In: High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference For, pp. 1–11 (2008)
Yang, H., Rutte, R., Jones, L., Simson, M., Sagawa, R., Ryll, H., Huth, M., Pennycook, T., Green, M., Soltau, H.: Simultaneous atomic-resolution electron ptychography and z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. 7, 12532 (2016)
Article
Google Scholar
Martin, K., Hoffman, B.: Mastering CMake: a cross-platform build system. Kitware, New York (2010)
Google Scholar
NVIDIA: CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/
Harris, M.: “Optimizing parallel reduction in CUDA”. Presentation included in the CUDA Toolkit released by NVIDIA. http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf (2007)
Intel: E5-4669v4. https://ark.intel.com/products/93805/Intel-Xeon-Processor-E5-4669-v4-55M-Cache-2_20-GHz
Sakran, N., Yuffe, M., Mehalel, M., Doweck, J., Knoll, E., Kovacs, A.: The implementation of the 65nm dual-core 64b merom processor. In: Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 106–590 (2007)
Jeffers, J., Reinders, J.: Intel Xeon Phi coprocessor high performance programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)
Google Scholar
Stone, G., Ophus, C., Birol, T., Ciston, J., Lee, C.-H., Wang, K., Fennie, C.J., Schlom, D.G., Alem, N., Gopalan, V.: Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. Nat. Commun. 7 (2016)
Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y.H., Melinte, G., Chiu, W., Rodriguez, J.A., Miao, J.: GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 7(1), 10409 (2017)
Article
Google Scholar
Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., Hwang, H.Y.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657–661 (2004)
Article
Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S.: Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100(20), 206101 (2008)
Article
Google Scholar
Findlay, S., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y.: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 110(7), 903–923 (2010)
Article
Google Scholar
Kourkoutis, L.F., Parker, M., Vaithyanathan, V., Schlom, D., Muller, D.: Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys. Rev. B. 84(7), 075485 (2011)
Article
Google Scholar
Woehl, T., Keller, R.: Dark-field image contrast in transmission scanning electron microscopy: effects of substrate thickness and detector collection angle. Ultramicroscopy. 171, 166–176 (2016)
Article
Google Scholar
Cui, J., Yao, Y., Wang, Y., Shen, X., Yu, R.: The origin of atomic displacements in HAADF images of the tilted specimen. arXiv preprint arXiv:1704.07524 (2017)