Crewe, A.V.: Scanning transmission electron microscopy. J. Microsc. **100**(3), 247–259 (1974)

Article
Google Scholar

Nellist, P.D.: Scanning transmission electron microscopy, pp. 65–132. Springer, New York (2007)

Google Scholar

Batson, P., Dellby, N., Krivanek, O.: Sub-ångstrom resolution using aberration corrected electron optics. Nature **418**(6898), 617–620 (2002)

Article
Google Scholar

Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. **8**(4), 263–270 (2009)

Article
Google Scholar

Pennycook, S.J.: The impact of stem aberration correction on materials science. Ultramicroscopy. **180**, 22–33 (2017). doi:10.1016/j.ultramic.2017.03.020

Pelz, P.M., Qiu, W.X., Bücker, R., Kassier, G., Miller, R.: Low-dose cryo electron ptychography via non-convex bayesian optimization. arXiv preprint arXiv:1702.05732 (2017)

Van den Broek, W., Koch, C.T.: Method for retrieval of the three-dimensional object potential by inversion of dynamical electron scattering. Phys. Rev. Lett. **109**(24), 245502 (2012)

Article
Google Scholar

Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I., Voyles, P.M.: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. **5**, 4155 (2014)

Article
Google Scholar

Mevenkamp, N., Binev, P., Dahmen, W., Voyles, P.M., Yankovich, A.B., Berkels, B.: Poisson noise removal from high-resolution stem images based on periodic block matching. Adv. Struct. Chem. Imaging. **1**(1), 3 (2015)

Article
Google Scholar

Ophus, C., Ciston, J., Pierce, J., Harvey, T.R., Chess, J., McMorran, B.J., Czarnik, C., Rose, H.H., Ercius, P.: Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry. Nat. Commun. **7** (2016). doi:10.1038/ncomms10719

van den Bos, K.H., De Backer, A., Martinez, G.T., Winckelmans, N., Bals, S., Nellist, P.D., Van Aert, S.: Unscrambling mixed elements using high angle annular dark field scanning transmission electron microscopy. Phys. Rev. Lett. **116**(24), 246101 (2016)

Article
Google Scholar

Miao, J., Ercius, P., Billinge, S.J.L.: Atomic electron tomography: 3D structures without crystals. Science **353**(6306), 2157–2157 (2016). doi:10.1126/science.aaf2157

Article
Google Scholar

Xu, R., Chen, C.-C., Wu, L., Scott, M., Theis, W., Ophus, C., Bartels, M., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R.: Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. **14**(11), 1099–1103 (2015)

Article
Google Scholar

Yang, Y., Chen, C.-C., Scott, M., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., Zhou, J.: Deciphering chemical order/disorder and material properties at the single-atom level. Nature **542**(7639), 75–79 (2017)

Article
Google Scholar

Scott, M.C., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen, U., Regan, B.C., Miao, J.: Electron tomography at 2.4-angstrom resolution. Nature **483**(7390), 444–447 (2012). doi:10.1038/nature10934

Article
Google Scholar

Chen, C.-C., Zhu, C., White, E.R., Chiu, C.-Y., Scott, M.C., Regan, B.C., Marks, L.D., Huang, Y., Miao, J.: Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature **496**(7443), 74–77 (2013). doi:10.1038/nature12009

Article
Google Scholar

Cowley, J.M., Moodie, A.F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. **10**(10), 609–619 (1957)

Article
Google Scholar

Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy **23**(1), 77–96 (1987)

Article
Google Scholar

Ishizuka, K., Uyeda, N.: A new theoretical and practical approach to the multislice method. Acta Crystallogr. Sect. A Cryst. Phys. Diffr Theor. Gen. Crystallogr. **33**(5), 740–749 (1977)

Article
Google Scholar

Ishizuka, K.: A practical approach for stem image simulation based on the FFT multislice method. Ultramicroscopy. **90**(2), 71–83 (2002)

Article
Google Scholar

Kirkland, E.J.: Advanced computing in electron microscopy, Second edition. Springer, New York (2010)

Stadelmann, P.: Ems-a software package for electron diffraction analysis and hrem image simulation in materials science. Ultramicroscopy **21**(2), 131–145 (1987)

Article
Google Scholar

Stadelmann, P.: Image analysis and simulation software in transmission electron microscopy. Microsc. Microanal. **9**(S03), 60–61 (2003)

Google Scholar

Kilaas, R.: MacTempas a program for simulating high resolution TEM images and diffraction patterns. http://www.totalresolution.com/

Koch, C.T.: Determination of core structure periodicity and point defect density along dislocations. Arizona State University (2002). http://adsabs.harvard.edu/abs/2002PhDT........50K

De Graef, M.: Introduction to conventional transmission electron microscopy. Cambridge University Press, New York (2003)

Book
Google Scholar

Zuo, J., Mabon, J.: Web-based electron microscopy application software: Web-emaps. Microsc. Microanal. **10**(S02), 1000 (2004)

Article
Google Scholar

Carlino, E., Grillo, V., Palazzari, P.: Accurate and fast multislice simulations of haadf image contrast by parallel computing. Microsc. Semicond. Mater. **2007**, 177–180 (2008)

Google Scholar

Grillo, V., Rotunno, E.: STEM_CELL: a software tool for electron microscopy: part I-simulations. Ultramicroscopy. **125**, 97–111 (2013)

Article
Google Scholar

Rosenauer, A., Schowalter, M.: Stemsim—new software tool for simulation of stem haadf z-contrast imaging. Microsc. Semicond. Mater. **2007**, 170–172 (2008)

Google Scholar

Walton, S.K., Zeissler, K., Branford, W.R., Felton, S.: Malts: a tool to simulate lorentz transmission electron microscopy from micromagnetic simulations. IEEE Trans. Magn. **49**(8), 4795–4800 (2013)

Article
Google Scholar

Bar-Sadan, M., Barthel, J., Shtrikman, H., Houben, L.: Direct imaging of single au atoms within gaas nanowires. Nano Lett. **12**(5), 2352–2356 (2012)

Article
Google Scholar

Lobato, I., Van Dyck, D.: Multem: a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with cuda. Ultramicroscopy. **156**, 9–17 (2015)

Article
Google Scholar

Lobato, I., Van Aert, S., Verbeeck, J.: Progress and new advances in simulating electron microscopy datasets using multem. Ultramicroscopy. **168**, 17–27 (2016)

Article
Google Scholar

Van den Broek, W., Jiang, X., Koch, C.: FDES, a GPU-based multislice algorithm with increased efficiency of the computation of the projected potential. Ultramicroscopy. **158**, 89–97 (2015)

Article
Google Scholar

Cosgriff, E., D’Alfonso, A., Allen, L., Findlay, S., Kirkland, A., Nellist, P.: Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: elastic scattering. Ultramicroscopy. **108**(12), 1558–1566 (2008)

Article
Google Scholar

Forbes, B., Martin, A., Findlay, S., D’alfonso, A., Allen, L.: Quantum mechanical model for phonon excitation in electron diffraction and imaging using a born-oppenheimer approximation. Phys. Rev. B. **82**(10), 104103 (2010)

Article
Google Scholar

Oelerich, J.O., Duschek, L., Belz, J., Beyer, A., Baranovskii, S.D., Volz, K.: Stemsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy. **177**, 91–96 (2017)

Article
Google Scholar

Ophus, C.: A fast image simulation algorithm for scanning transmission electron microscopy. Adv. Struct. Chem. Imaging. **3**(1), 13 (2017)

Article
Google Scholar

Yao, Y., Ge, B., Shen, X., Wang, Y., Yu, R.: Stem image simulation with hybrid cpu/gpu programming. Ultramicroscopy. **166**, 1–8 (2016)

Article
Google Scholar

Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE. **93**(2), 216–231 (2005)

Article
Google Scholar

NVIDIA: cuFFT. https://developer.nvidia.com/cufft

Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear algebra. In: High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference For, pp. 1–11 (2008)

Yang, H., Rutte, R., Jones, L., Simson, M., Sagawa, R., Ryll, H., Huth, M., Pennycook, T., Green, M., Soltau, H.: Simultaneous atomic-resolution electron ptychography and z-contrast imaging of light and heavy elements in complex nanostructures. Nat. Commun. **7**, 12532 (2016)

Article
Google Scholar

Martin, K., Hoffman, B.: Mastering CMake: a cross-platform build system. Kitware, New York (2010)

Google Scholar

NVIDIA: CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Harris, M.: “Optimizing parallel reduction in CUDA”. Presentation included in the CUDA Toolkit released by NVIDIA. http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf (2007)

Intel: E5-4669v4. https://ark.intel.com/products/93805/Intel-Xeon-Processor-E5-4669-v4-55M-Cache-2_20-GHz

Sakran, N., Yuffe, M., Mehalel, M., Doweck, J., Knoll, E., Kovacs, A.: The implementation of the 65nm dual-core 64b merom processor. In: Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 106–590 (2007)

Jeffers, J., Reinders, J.: Intel Xeon Phi coprocessor high performance programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

Google Scholar

Stone, G., Ophus, C., Birol, T., Ciston, J., Lee, C.-H., Wang, K., Fennie, C.J., Schlom, D.G., Alem, N., Gopalan, V.: Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. Nat. Commun. **7** (2016)

Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y.H., Melinte, G., Chiu, W., Rodriguez, J.A., Miao, J.: GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. **7**(1), 10409 (2017)

Article
Google Scholar

Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., Hwang, H.Y.: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature **430**(7000), 657–661 (2004)

Article
Google Scholar

LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S.: Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. **100**(20), 206101 (2008)

Article
Google Scholar

Findlay, S., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y.: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. **110**(7), 903–923 (2010)

Article
Google Scholar

Kourkoutis, L.F., Parker, M., Vaithyanathan, V., Schlom, D., Muller, D.: Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys. Rev. B. **84**(7), 075485 (2011)

Article
Google Scholar

Woehl, T., Keller, R.: Dark-field image contrast in transmission scanning electron microscopy: effects of substrate thickness and detector collection angle. Ultramicroscopy. **171**, 166–176 (2016)

Article
Google Scholar

Cui, J., Yao, Y., Wang, Y., Shen, X., Yu, R.: The origin of atomic displacements in HAADF images of the tilted specimen. arXiv preprint arXiv:1704.07524 (2017)