A non-rigid registration method for the analysis of local deformations in the wood cell wall
- Alessandra Patera1, 2,
- Stephan Carl3,
- Marco Stampanoni1, 5,
- Dominique Derome3Email authorView ORCID ID profile and
- Jan Carmeliet3, 4
https://doi.org/10.1186/s40679-018-0050-0
© The Author(s) 2018
Received: 12 July 2017
Accepted: 5 January 2018
Published: 22 January 2018
Abstract
This paper concerns the problem of wood cellular structure image registration. Given the large variability of wood geometry and the important changes in the cellular organization due to moisture sorption, an affine-based image registration technique is not exhaustive to describe the overall hygro-mechanical behaviour of wood at micrometre scales. Additionally, free tools currently available for non-rigid image registration are not suitable for quantifying the structural deformations of complex hierarchical materials such as wood, leading to errors due to misalignment. In this paper, we adapt an existing non-rigid registration model based on B-spline functions to our case study. The so-modified algorithm combines the concept of feature recognition within specific regions locally distributed in the material with an optimization problem. Results show that the method is able to quantify local deformations induced by moisture changes in tomographic images of wood cell wall with high accuracy. The local deformations provide new important insights in characterizing the swelling behaviour of wood at the cell wall level.
Keywords
Background
a Cross-sectional view of spruce wood sample consisting in two tissues with different porosity, i.e. latewood and earlywood. The ROI used for analysis is shown with the red box. b 3D comparison of the volumes at the two RH states: 25%RH in yellow and 85%RH in red
Image registration problem: a general overview
Image registration is a method to map two different images, which are acquired with the same or different experimental setups. Due to the importance of image registration in various application areas and given its complicated nature, a large number of image registration algorithms have been developed in the past. An exhaustive review of general-purpose image registration methods can be found in Brown [2] and in Wyawahare et al. [33]. Applications of image registration in the medical field include combining data from different modalities e.g., computer tomography (CT) and magnetic resonance imaging (MRI), to obtain more complete information about the patient, monitoring tumour growth [33], treatment verification [11, 12, 30], computer-aided diagnosis and disease following-up [15]; surgery simulation [22]; atlas building and comparison [13]; radiation therapy [8, 17]; anatomy segmentation [4, 7, 9, 10, 16, 20, 34] and image subtraction for contrast-enhanced images [19]. In contrast, much less algorithms for image registration are nowadays available for material applications. To allow introducing the basic idea of the new algorithm, aimed at capturing the local deformations of cellular materials, such as wood, a general mathematical description of image registration method is first given.
Transformations used to align two images can be global or local. A global transformation is given by a single equation, which maps the entire image. One global method is the affine registration model, which allows to quantify the affine strains along the three orthotropic directions of wood. However, this model fails to identify the local deformations [5, 25]. In this paper, an approach to detect and quantify local deformations in the cellular tissues using a non-rigid registration model is proposed. Any plane through wood cellular structure shows a form, which can be represented by a free-form surface with the aim of tracking its deformation during free swelling. This freeform surface can be determined using control points connected together by a mesh. The surface is approximated using a control mesh guaranteeing a certain level of smoothness. Many representations of free-form surface exist in the literature [29] and an approach of representing free-form deformations based on B-splines is used [28]. The approach proposed in this work has been adapted to the specific case study of wood cellular material and implemented in Matlab. It is based on an existing method implemented by Rueckert, as described in the following.
B-splines based non-rigid registration method: an elegant formulation
Example of deformable mesh in which each point is locally controlled, as shown, for example, in the blue, yellow and green boxes
The control points Πi,j,k are the unknown parameters of the B-spline FFD. The level of the non-rigid transformation depends on the resolution of the mesh of the control points. The spacing between the control points determines the resolution of non-rigid registration, i.e. a large spacing or low resolution results in a more global estimation of the deformations, compared to a smaller spacing (higher resolution) which models highly local deformations. At the same time, the number of control points determines the number of degrees of freedom and the computational complexity. The B-spline grid is constructed with the method of Lee et al. [18].
In the specific case study of this work, the difference between the two histograms of grey levels of the reference and moving images is smaller than 0.25 and the goodness of alignment cannot, therefore, be evaluated with the mutual information. Thus, the similarity measure is evaluated with the SSD.
Methods
A modified version of the B-splines based non-rigid registration algorithm for material science applications: the wood case study
In general, the deformation of wood contains a non-rigid component so that affine transformations alone are not sufficient to describe local deformations in wood tissues, subjected to free swelling due to water vapour adsorption, as identified, but not quantified yet, in Derome et al. [5] and Patera et al. [25]. Therefore, the transformation analysis includes both the affine and non-rigid components, as shown in Eq. 6. The global transformation Tglobal(x, y, z) is the affine transformation resulting from the affine registration model, as described in Derome et al. [5] and Patera et al. [25].
The algorithm, proposed by Rueckert et al. [28] and described above, is modified to improve the performance of the FFD for describing local deformations in complex cellular materials, such as wood. Most of the algorithms presented in literature, such as the one applied in this work, are based on the histogram of grey levels. The basic and simple idea of this modified version is to introduce some morphological operations in the original method to guide the algorithm in recognising typical features in complex structures, such as wood.
Overview of the non-rigid registration algorithm with the three methods described in the text
Graphical illustration of the different steps representing the two key-features of non-rigid registration algorithm based on points. On the right, a zoom on a squared region of interest is presented to visualise the described procedure. a The feature points (or coordinates) are extracted on the reference and moving images. b An artificial grid is added on both images and, finally, c the features points are summed to the nodes of the artificial grid in both, reference and moving images
One of the major drawbacks of such non-rigid registration method is related to the high-degree of freedom-inducing artefacts which is given to the B-spline functions to capture all potential local deformations in the structure. A way to prevent such artefacts is to include more constraints on the transformation. However, this becomes at finer grid resolutions. To overcome these difficulties, the solution proposed in this work is to make a comparison between two registration types and to consider, as final result, the image difference between ‘Registration 1’, considered as the reference since it includes more constraints, and ‘Registration 2’ or ‘Registration P’, depending on the case study.
The error is defined as the pixel difference between the two images after non-rigid registration. The pair of registration images with the smallest difference is considered for the final calculation of the local deformations and non-rigid strains. This step ensures the selection of the best non-rigid registration method for each specific region of interest studied in the volume. Once the optimization problem is solved by minimization of the cost function, the displacement field is determined and the local strain fields are evaluated and plotted.
The equivalent strain is used to describe the deformation intensity in wood. More details on strain tensors calculation can be found in Abd-Elmoniem et al. [1].
As previously described, the non-rigid registration problem can be then solved by performing first the intensity-based methods (‘Registration 1’ and ‘Registration 2’) and then the point-based method (‘Registration P’). The two intensity-based registrations methods are the critical steps of the algorithm as they incorporate the initial optimisation and minimisation problem in a sequential loop.
Rueckert et al. [28] describe the optimization problem in terms of minimizing a cost function, as given in Eq. 3, where the optimization proceeds in several steps to improve the computational efficiency. First, the affine transformation Tglobal(x,y,z) is optimized, which corresponds to optimizing the similarity between the two images, where the penalty term of the cost function in (7) is zero. During the subsequent stage, the non-rigid registration parameters are optimized. In each stage, a simple iterative steepest descent technique is used stepping in the direction of the gradient vector with a certain step size. The algorithm stops when a local minimum of the cost function is found, given by the condition that \(\left\| {\nabla {\mathcal{C}}} \right\| \le \chi\) for some small positive value of χ. The minimization loop based on the steepest descent technique is implemented within a line search strategy. As line search strategy, two methods are used: the first is a simple one based on a parametric function; the second is a normal line search method with Wolfe conditions. A detailed description of line search strategy can be found in Nocedal and Wright [24].
As mentioned above, the algorithm is implemented in 2D as the deformations in wood occur almost only along the tangential and radial directions. Therefore, before applying the non-rigid registration algorithm, a set of slices at the same plane of fixed and moving images are selected. Then, the optimal parameters for the three registrations methods, ‘Registration 1’, ‘Registration 2’ and ‘Registration P’, are determined. Finally, the algorithm runs in a loop over the whole stack of slices.
Validation of the algorithm by comparison with a finite element model
Example of application of the algorithm on an artificial homogeneous image (a) where the grid is imposed to highlight the deformations and mismatches. The difference between reference and moving images is shown before registration (b), then after non-rigid registration (c). In d the non-rigid displacement fields in the two directions and in e the non-rigid strains in the x–y plane are mapped on the reference image. f Strain fields plotted on the deformed image as result of finite element simulation, under the assumption of homogeneous material. The strain in x-direction (E11) is on the left side, the strain calculated in y-direction (E22) is on right side
The local strains calculated with the modified algorithm can be compared with the results of the simulation with finite element (Fig. 5f) obtained with the software Abaqus FEA. A good agreement between the results of simulation and registration algorithm is observed. The strains show in the same range of values and distribution over the surface. Only is the non-rigid strains, in the y-direction, we see some fluctuations.
Results and discussion
The non-rigid registration algorithm presented in this paper is used for documenting the occurrence of local deformations during swelling of the complex cellular structure of softwood. The focus is to investigate the moisture-induced deformations in tissues from spruce wood, namely Picea abies (L. Karst). The algorithm is applied on tomographic datasets of wood with a voxel pitch equal to 0.8 μm, acquired at the Centre for X-Ray Tomography of the Ghent University (UGCT) in Belgium [6, 21]. The analysis is performed on a wood sample of cross-section dimensions of approximately 500 × 700 μm2 which presents a combination of tissues, named earlywood and latewood, with different porosities (≈ 78% for earlywood and 45% for latewood) and hygro-mechanical behaviour (anisotropic swelling in earlywood and more isotropic swelling in latewood). The sample is scanned at two relative humidity (RH) values, referred as dry state, i.e. 25% RH, and wet state, i.e. 85% RH, as shown in Fig. 1b. Wood swells when exposed to an increase in RH and the typical deformations observed in the cellular structure of wood samples has been described globally. From previous [5, 25] and recent work [26], it is known that these X-ray measurements are reproducible as no deformation is seen between the CT datasets acquired at start and end of the sorption–desorption sequences. The aim of this study is to quantify these deformations also locally using non-rigid registration.
a Errors between reference and registered images after non-rigid registration for each slices of the volume, using an intensity-based method for R1 (grey) and R2 (black) estimation and a point-based registration RP (orange). b Displacement fields in one slice of the wood sample in pixels (1 pixel = 0.8 μm), c 2D map of total strains (affine plus non-rigid) on the reference images
Figure 6b shows the deformations in pixel, where a pixel measures 0.8 μm, in the tangential (x-) and radial (y-) directions for one slice of the datasets. The deformations are calculated over the whole area of the ROI, and thus deformations are calculated independently from the actual cellular structure. In the next step, shown in Fig. 6c, the total local strain (affine plus non-rigid), are presented. In this sample, a combination of positive (red) and negative (blue) total strains in E xx are observed in the region between earlywood and latewood. This combined effect indicates a bending of the cell structure. For E yy , a negative strain (blue) is observed along the location of ray cells in the earlywood cell wall, surrounded by regions in earlywood with positive (red) strains. This observation could indicate to a kind of slip behaviour between rays and surrounding material. This result suggests the restraining role of ray cells on the cellular structure of soft materials, such as wood.
a Three-dimensional map of equivalent von Mises non-rigid strains on the wood cell wall of sample ELWd,1 for 200 slices, as indicated in the bar. b Cross-section cuts in the position indicated in red in the bar
The results presented in this section illustrate clearly that non-rigid registration is a powerful tool for capturing the deformations of complex cellular and biological materials. Such information cannot be recovered using other types of image registration techniques, such as, for example, the affine registration.
Conclusion
In this work, a new algorithm is developed based on the work of Rueckert using B-spline. The main contribution consists in an accurate combination for the specific case study between the concept of feature recognition within specific regions locally distributed in the material with an optimization problem. The work is validated with a synthetically deformed dataset in bending and is used for documenting local swelling on a complex cellular material, wood, using two states of moisture content at 25 and 85% RH.
The non-rigid registration algorithm introduced in this work is a powerful tool for detecting and quantifying the non-rigid deformations in complex biological materials, such as wood. The algorithm contains a wide range of tools for image analysis: in particular, morphological operations, segmentation and linear and non-linear transformations. This work is mainly focused on the implementation of a non-linear transformation based on B-spline functions. The method can be used for studying the behaviour of different existing materials detected with several experimental setups, in 2D, and it can be extended to a 3D case study.
In this work, the technique is used to investigate the occurrence of local deformations in wood provoked by moisture changes. The datasets are acquired with X-ray Tomography, thus leading to little changes in the grey-value intensity within the cell walls. This allows the use of squared sum of intensity differences (SSD) as similarity criterion. However, there are cases, especially in medicine, where the two datasets, i.e., reference and moving, are acquired with different configurations leading to contrast enhancement (i.e., pre- and post-contrast agent with magnetic resonance imaging). In such case, another similarity criterion, insensitive to intensity changes, would be more suitable, as already demonstrated in Rueckert et al. [28]. The proposed method is expected to be widely applicable in material science and in medicine for detecting locally object deformations.
Declarations
Authors’ contributions
DD and JC conceived the project. AP, DD and JC defined the objectives and methodology. AP, SC and DD acquired the data, with the contribution of MS. AP and SC developed and implemented the code. AP, DD and JC analyzed the results. All authors contributed to the manuscript. All authors read and approved the final manuscript.
Acknowledgements
Dr. Jan Van Den Bulcke and Prof. Dr. Joris Van Acker are greatly acknowledged. The experiments were carried out at the Centre of X-ray Tomography in Ghent University, Belgium. We acknowledge Dr. Ahmad Rafsanjani for his support in the validation of the algorithm with FEM. Dr. Michele Griffa is greatly acknowledged for the insightful discussion on the registration method.
Competing interests
The authors declare that they have no competing interests.
Availability of data and materials
Once accepted for publication, the data of this publication will be made available on the ETHZ website.
Consent for publication
Does not apply to this submission.
Ethics approval and consent to participate
Does apply to this study.
Funding
This work was supported of the Swiss National Science Foundation (SNF) [Grant Number 125184].
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Authors’ Affiliations
References
- Abd-Elmoniem, K.Z., Stuber, M., Prince, J.L.: Direct three- dimensional myocardial strain tensor quantification and tracking using zHARP. Med. Image Anal. 12(6), 778–786 (2008). https://doi.org/10.1016/j.media.2008.03.008View ArticleGoogle Scholar
- Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24(4), 325–376 (1992). https://doi.org/10.1145/146370.146374View ArticleGoogle Scholar
- Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986). https://doi.org/10.1109/tpami.1986.4767851View ArticleGoogle Scholar
- Collins, D.L., Evans, A.C.: Animal: validation and applications of nonlinear registration-based segmentation. Int. J. Pattern Recognit Artif Intell. 11(08), 1271–1294 (1997). https://doi.org/10.1142/S0218001497000597View ArticleGoogle Scholar
- Derome, D., Griffa, M., Koebel, M., Carmeliet, J.: Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J. Struct. Biol. 173(1), 180–190 (2011). https://doi.org/10.1016/j.jsb.2010.08.011View ArticleGoogle Scholar
- Dierick, M., Van Loo, D., Masschaele, B., Van den Bulcke, J., Van Acker, J., Cnudde, V., Van Hoorebeke, L.: Recent micro-CT scanner developments at UGCT. Nucl. Instrum. Methods Phys. Res. Sect. B 324, 35–40 (2010)View ArticleGoogle Scholar
- Dornheim, L., Tönnies, K. D., Dixon, K.: Automatic segmentation of the left ventricle in 3D SPECT data by registration with a dynamic anatomic model. In: Duncan, J. S., Gerig, G. (eds.) Medical image computing and computer-assisted intervention—MICCAI 2005, pp. 335–342. Springer, Berlin (2005). http://link.springer.com/chapter/10.1007/11566465_42
- Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S.: Large deformation 3D image registration in image-guided radiation therapy. Phys. Med. Biol. 50(24), 5869–5892 (2005)View ArticleGoogle Scholar
- Frangi, A.F., Laclaustra, M., Lamata, P.: A registration-based approach to quantify flow-sequences. IEEE Trans. Med. Imaging 22(11), 1458–1469 (2003). https://doi.org/10.1109/tmi.2003.819278View ArticleGoogle Scholar
- Gao, Y., Sandhu, R., Fichtinger, G., Tannenbaum, A.R.: A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery. IEEE Trans. Med. Imaging 29(10), 1781–1794 (2010). https://doi.org/10.1109/TMI.2010.2052065View ArticleGoogle Scholar
- Gering, D. T., Nabavi, A., Kikinis, R., Grimson, W. E. L., Hata, N., Everett, P., Wells, W. M.: An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In: Taylor, C., Colchester, A. (eds.), Medical image computing and computer-assisted intervention—MICCAI’99, pp. 809–819. Springer, Berlin (1999). http://link.springer.com/chapter/10.1007/10704282_88
- Gering, D.T., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L.J., Grimson, W.E.L., Wells, W.M.: An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J. Magn. Reson. Imaging 13(6), 967–975 (2001). https://doi.org/10.1002/jmri.1139View ArticleGoogle Scholar
- Gooya, A., Biros, G., Davatzikos, C.: deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2011). https://doi.org/10.1109/TMI.2010.2078833View ArticleGoogle Scholar
- Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, 15.50. Manchester, UK (1988). http://courses.daiict.ac.in/pluginfile.php/13002/mod_resource/content/0/References/harris1988.pdf
- Huang, X., Ren, J., Guiraudon, G., Boughner, D., Peters, T.M.: Rapid dynamic image registration of the beating heart for diagnosis and surgical navigation. IEEE Trans. Med. Imaging 28(11), 1802–1814 (2009). https://doi.org/10.1109/TMI.2009.2024684View ArticleGoogle Scholar
- Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., Bv, Ginneken: Multi-atlas-based segmentation with local decision fusion—application to cardiac and aortic segmenta- tion in CT scans. IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009)View ArticleGoogle Scholar
- Lavely, W.C., Scarfone, C., Cevikalp, H., Li, R., Byrne, D.W., Cmelak, A.J., Fitzpatrick, J.M.: Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Med. Phys. 31(5), 1083–1092 (2004). https://doi.org/10.1118/1.1688041View ArticleGoogle Scholar
- Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B- splines. IEEE Trans. Visual Comput. Graphics 3(3), 228–244 (1997). https://doi.org/10.1109/2945.620490View ArticleGoogle Scholar
- Maksimov, D., Hesser, J., Brockmann, C., Jochum, S., Dietz, T., Schnitzer, A., Diehl, S.: Graph-matching based CTA. IEEE Trans. Med. Imaging 28(12), 1940–1954 (2009). https://doi.org/10.1109/TMI.2009.2026370View ArticleGoogle Scholar
- Martin, S., Daanen, V., Troccaz, J.: Atlas-based prostate segmentation using an hybrid registration. Int. J. Comput. Assist. Radiol. Surg. 3(6), 485–492 (2008). https://doi.org/10.1007/s11548-008-0247-0View ArticleGoogle Scholar
- Masschaele, B.C., Cnudde, V., Dierick, M., Jacobs, P., Van Hoorebeke, L., Vlassenbroeck, J.: UGCT: new X-ray radiography and tomography facility. Nucl. Instrum. Methods Phys. Res. Sect. A 580(1), 266–269 (2007). https://doi.org/10.1016/j.nima.2007.05.099View ArticleGoogle Scholar
- Miller, K., Wittek, A., Joldes, G., Horton, A., Dutta-Roy, T., Berger, J., Morriss, L.: Modelling brain deformations for computer-integrated neurosurgery. Int. J. Numer. Methods Biomed. Eng. 26(1), 117–138 (2010). https://doi.org/10.1002/cnm.1260View ArticleGoogle Scholar
- Mises, R.v.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von des Gesellschaft des Wissenschaften zu Göttingen, Mathematisch-Physicalisch Klasse 1913, 582–592 (1913)Google Scholar
- Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)Google Scholar
- Patera, A., Derome, D., Griffa, M., Carmeliet, J.: Hysteresis in swelling and in sorption of wood tissue. J. Struct. Biol. 182(3), 226–234 (2013). https://doi.org/10.1016/j.jsb.2013.03.003View ArticleGoogle Scholar
- Patera, A., Van den Bulcke, J., Boone, M., Derome, D., Carmeliet, J.: Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Sci. Technol. (2017). https://doi.org/10.1007/s00226-017-0960-3Google Scholar
- Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003). https://doi.org/10.1109/TMI.2003.815867View ArticleGoogle Scholar
- Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999). https://doi.org/10.1109/42.796284View ArticleGoogle Scholar
- Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. Proc. ACM SIGGRAPH 20(4), 151–160 (1986)View ArticleGoogle Scholar
- Staring, M., van der Heide, U.A., Klein, S., Viergever, M.A., Pluim, J.: Registration of cervical MRI using multifeature mutual information. IEEE Trans. Med. Imaging 28(9), 1412–1421 (2009). https://doi.org/10.1109/TMI.2009.2016560View ArticleGoogle Scholar
- Szeliski, R., Coughlan, J.: Spline-based image registration. Int. J. Comput. Vision 22(3), 199–218 (1997). https://doi.org/10.1023/A:1007996332012View ArticleGoogle Scholar
- Wahba, G.: Spline models for observational data. Soc. Ind. Appl. Math (1990). http://epubs.siam.org/doi/book/10.1137/1.9781611970128
- Wyawahare, M.V., Patil, P.M., Abhyankar, H.K., et al.: Image registration techniques: an overview. Int. J. Signal Process. Image Process. Pattern Recogn. 2(3), 11–28 (2009)Google Scholar
- Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29(9), 1612–1625 (2010). https://doi.org/10.1109/TMI.2010.2047112View ArticleGoogle Scholar