Pennycook, S.J., Varela, M., Lupini, A.R., Oxley, M.P., Chisholm, M.F.: Atomic-resolution spectroscopic imaging: past, present and future. J. Electron Microsc. 58, 87–97 (2009)
Article
Google Scholar
Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., Idrobo, J.C.: Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012)
Article
Google Scholar
Suenaga, K., Koshino, M.: Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010)
Article
Google Scholar
Varela, M., Gazquez, J., Pennycook, S.J.: STEM-EELS imaging of complex oxides and interfaces. MRS Bull. 37, 29–35 (2012)
Article
Google Scholar
Kumar, A., Ehara, Y., Wada, A., Funakubo, H., Griggio, F., Trolier-McKinstry, S., et al.: Dynamic piezoresponse force microscopy: spatially resolved probing of polarization dynamics in time and voltage domains. J. Appl. Phys. 112, 052021 (2012)
Article
Google Scholar
Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., Kalinin, S.V.: Direct mapping of ion diffusion times on LiCoO(2) surfaces with nanometer resolution. J. Electrochem. Soc. 158, A982–A990 (2011)
Article
Google Scholar
Kalinin, S., Balke, N., Jesse, S., Tselev, A., Kumar, A., Arruda, T.M., et al.: Li-ion dynamics and reactivity on the nanoscale. Mater. Today 14, 548–558 (2011)
Article
Google Scholar
Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., et al.: Direct mapping of ionic transport in a si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano 5, 9682–9695 (2011)
Article
Google Scholar
Kano, H., Segawa, H., Okuno, M., Leproux, P., Couderc, V.: Hyperspectral coherent Raman imaging—principle, theory, instrumentation, and applications to life sciences. J. Raman Spectrosc. 47, 116–123 (2016)
Article
Google Scholar
Wabuyele, M.B., Yan, F., Griffin, G.D., Vo-Dinh, T.: Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev. Sci. Instrum. 76, 063710 (2005)
Article
Google Scholar
Fu, D., Holtom, G., Freudiger, C., Zhang, X., Xie, X.S.: Hyperspectral imaging with stimulated raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117, 4634–4640 (2013)
Article
Google Scholar
Bouillard, J.-S.G., Dickson, W., Wurtz, G.A., Zayats, A.V.: Near-field hyperspectral optical imaging. ChemPhysChem 15, 619–629 (2014)
Article
Google Scholar
Jung, S., Foston, M., Kalluri, U.C., Tuskan, G.A., Ragauskas, A.J.: 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass. Angew. Chem. Int. Ed. 51, 12005–12008 (2012)
Article
Google Scholar
Ievlev, A.V., Maksymovych, P., Trassin, M., Seidel, J., Ramesh, R., Kalinin, S.V., et al.: Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces. 8, 29588–29593 (2016)
Article
Google Scholar
McDonnell, L.A., Heeren, R.M.A.: Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007)
Article
Google Scholar
Zimmermann, T.: Spectral imaging and linear unmixing in light microscopy. In: Rietdorf, T., Denert, E. (eds.) Microscopy Techniques: −/−, pp. 245–265. Springer, Berlin (2005)
Chapter
Google Scholar
Peckner, R., Myers, S.A., Egertson, J.D., Johnson, R.S., Carr, S.A., MacCoss, M.J., et al.: Specter: linear deconvolution as a new paradigm for targeted analysis of data-independent acquisition mass spectrometry proteomics. bioRxiv (2017). https://doi.org/10.1101/152744
Google Scholar
Kalinin, S.V., Jesse, S., Rodriguez, B.J., Shin, J., Baddorf, A.P., Lee, H.N., et al.: Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology 17, 3400 (2006)
Article
Google Scholar
Collins, L., Okatan, M.B., Li, Q., Kravenchenko, I.I., Lavrik, N.V., Kalinin, S.V., et al.: Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection. Nanotechnology 26, 175707 (2015)
Article
Google Scholar
Collins, L., Belianinov, A., Somnath, S., Balke, N., Kalinin, S.V., Jesse, S.: Full data acquisition in Kelvin probe force microscopy: mapping dynamic electric phenomena in real space. Sci. Rep. 6, 30557 (2016)
Article
Google Scholar
Cohen, G., Halpern, E., Nanayakkara, S.U., Luther, J.M., Held, C., Bennewitz, R., et al.: Reconstruction of surface potential from Kelvin probe force microscopy images. Nanotechnology 24, 295702 (2013)
Article
Google Scholar
Kirkland, E.J.: Linear image approximations. In: Kirkland, E.J. (ed.) Advanced Computing in Electron Microscopy, pp. 29–60. Springer, Boston (2010)
Chapter
Google Scholar
Björck, Å: Numerical Methods for Least Squares Problems. SIAM (1996)
Kannan, R.: Scalable and Distributed Constrained Low Rank Approximations. Georgia Institute of Technology, Atlanta (2016)
Google Scholar
Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. J. Glob. Optim. 58, 285–319 (2014)
Article
Google Scholar
Kannan, R., Ishteva, M., Drake, B., Park, H.: Bounded matrix low rank approximation. In: Non-negative Matrix Factorization Techniques, pp. 89–118. Springer, Berlin (2016)
Kannan, R., Ishteva, M., Park, H.: Bounded matrix factorization for recommender system. Knowl. Inf. Syst. 39, 491–511 (2014)
Article
Google Scholar
Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. 19, 44–57 (2002)
Article
Google Scholar
Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J.Y., Hero, A.O.: Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Signal Process. 57, 4355–4368 (2009)
Article
Google Scholar
Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. In: Philosophical Magazine Series 6, vol. 2, pp. 559–572. (1901)
Jolliffe, I.: Principal component analysis. In: Wiley StatsRef: Statistics Reference Online. Wiley, London (2014)
Medina, J.M., Pereira, L.M., Correia, H.T., Nascimento, S.M.C.: Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra. J. Biomed. Opt. 16, 076001 (2011)
Article
Google Scholar
Bonnet, N.: Artificial intelligence and pattern recognition techniques in microscope image processing and analysis. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 114, pp. 1–77. Elsevier Academic Press Inc, San Diego (2000)
Google Scholar
Bonnet, N.: Multivariate statistical methods for the analysis of microscope image series: applications in materials science. J. Microsc. Oxf. 190, 2–18 (1998)
Article
Google Scholar
Serin, V., Andrieu, S., Serra, R., Bonell, F., Tiusan, C., Calmels, L., et al.: TEM and EELS measurements of interface roughness in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys. Rev. B 79, 144413 (2009)
Article
Google Scholar
Bosman, M., Watanabe, M., Alexander, D.T.L., Keast, V.J.: Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006)
Article
Google Scholar
Biesinger, M.C., Paepegaey, P.-Y., McIntyre, N.S., Harbottle, R.R., Petersen, N.O.: Principal component analysis of TOF-SIMS images of organic monolayers. Anal. Chem. 74, 5711–5716 (2002)
Article
Google Scholar
Race, A.M., Steven, R.T., Palmer, A.D., Styles, I.B., Bunch, J.: Memory efficient principal component analysis for the dimensionality reduction of large mass spectrometry imaging data sets. Anal. Chem. 85, 3071–3078 (2013)
Article
Google Scholar
Kalinin, S.V., Rodriguez, B.J., Budai, J.D., Jesse, S., Morozovska, A.N., Bokov, A.A., et al.: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81, 064107 (2010)
Article
Google Scholar
Jesse, S., Kalinin, S.V.: Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009)
Article
Google Scholar
Kalinin, S.V., Rodriguez, B.J., Jesse, S., Morozovska, A.N., Bokov, A.A., Ye, Z.G.: Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. 95, 142902 (2009)
Article
Google Scholar
Ovchinnikov, O.S., Jesse, S., Bintacchit, P., Trolier-McKinstry, S., Kalinin, S.V.: Disorder identification in hysteresis data: recognition analysis of the random-bond-random-field ising model. Phys. Rev. Lett. 103, 157203 (2009)
Article
Google Scholar
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263
Article
Google Scholar
Shiga, M., Muto, S., Tatsumi, K., Tsuda, K.: Matrix factorization for automatic chemical mapping from electron microscopic spectral imaging datasets. Trans. Mater. Res. Soc. Jpn 41, 333–336 (2016)
Article
Google Scholar
Shiga, M., Tatsumi, K., Muto, S., Tsuda, K., Yamamoto, Y., Mori, T., et al.: Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy 170, 43–59 (2016)
Article
Google Scholar
Kuang, D., Park, H.: Fast rank-2 nonnegative matrix factorization for hierarchical document clustering. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 739–747. (2013)
Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–273. (2003)
Candes, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55, 111–119 (2012)
Article
Google Scholar
Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: International Conference on Machine Learning. (2011)
Kannan, R., Ballard, G., Park, H.: MPI-FAUN: an MPI-based framework for alternating-updating nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 30(3), 544–558 (2018)
Article
Google Scholar
Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 606–610. (2005)
Choo, J., Lee, C., Clarkson, E., Liu, Z., Lee, H., Chau, D.H.P., et al.: VisIRR: interactive visual information retrieval and recommendation for large-scale document data. Georgia Institute of Technology, Atlanta (2013)
Google Scholar
Choo, J., Lee, C., Kim, H., Lee, H., Liu, Z., Kannan, R., et al.: VisIRR: visual analytics for information retrieval and recommendation with large-scale document data. In: Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pp. 243–244. (2014)
Kim, J., Park, H.: Sparse nonnegative matrix factorization for clustering. Georgia Institute of Technology, Atlanta (2008)
Google Scholar
Bishop, C.M.: Pattern recognition and machine learning. Springer, Berlin (2006)
Google Scholar
Wit, E., Heuvel, E.V.D., Romeijn, J.-W.: ‘All models are wrong…’: an introduction to model uncertainty. Stat. Neerlandica 66, 217–236 (2012)
Article
Google Scholar
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: a modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373 (2017)
Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. (2013)
Singh, A., Gordon, G.: A unified view of matrix factorization models. In: Machine Learning and Knowledge Discovery in Databases, pp. 358–373. (2008)
Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal component analysis to the exponential family
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Article
Google Scholar
Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1548–1560 (2011)
Article
Google Scholar
Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)
Google Scholar
Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal components analysis to the exponential family. In: Advances in Neural Information Processing Systems, pp. 617–624. (2001)
Lee, D.D., Sebastian, S.H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Article
Google Scholar
Singh, A.P., Gordon, G.J.: A unified view of matrix factorization models. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 358–373, Berlin (2008)
Pacholski, M.L., Winograd, N.: Imaging with mass spectrometry. Chem. Rev. 99, 2977 (1999)
Article
Google Scholar
Ievlev, A.V., Belianinov, A., Jesse, S., Allison, D.P., Doktycz, M.J., Retterer, S.T., et al.: Automated interpretation and extraction of topographic information from time of flight secondary ion mass spectrometry data. Sci. Rep. 7, 17099 (2017)
Article
Google Scholar
Seidel, J., Trassin, M., Zhang, Y., Maksymovych, P., Uhlig, T., Milde, P., et al.: Electronic properties of isosymmetric phase boundaries in highly strained Ca-Doped BiFeO3. Adv. Mater. 26, 4376–4380 (2014)
Article
Google Scholar
Ievlev, A.V., Maksymovych, P., Trassin, M., Seidel, J., Ramesh, R., Kalinin, S.V., et al.: Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces. 8, 29588–29593 (2016)
Article
Google Scholar
Kalinin, S.V., Pennycook, S.J.: Microscopy: hasten high resolution. Nature 515, 487 (2014)
Article
Google Scholar
He, Q., Woo, J., Belianinov, A., Guliants, V.V., Borisevich, A.Y.: Better catalysts through microscopy: mesoscale M1/M2 intergrowth in Molybdenum–Vanadium based complex oxide catalysts for propane ammoxidation. ACS Nano 9, 3470–3478 (2015)
Article
Google Scholar
Vasudevan, R.K., Ziatdinov, M., Jesse, S., Kalinin, S.V.: Phases and interfaces from real space atomically resolved data: physics-based deep data image analysis. Nano Lett. 16, 5574–5581 (2016)
Article
Google Scholar
Ziatdinov, M., Fujii, S., Kiguchi, M., Enoki, T., Jesse, S., Kalinin, S.V.: Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology 27, 495703 (2016)
Article
Google Scholar
He, Q., Woo, J., Belianinov, A., Guliants, V.V., Borisevich, A.Y.: Better catalysts through microscopy: mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium based complex oxide catalysts for propane ammoxidation. ACS Nano 9, 3470–3478 (2015)
Article
Google Scholar
Ziatdinov, M., Maksov, A., Li, L., Sefat, A.S., Maksymovych, P., Kalinin, S.V.: Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe2As2. Nanotechnology 27, 475706 (2016)
Article
Google Scholar
Sefat, A.S., Marty, K., Christianson, A.D., Saparov, B., McGuire, M.A., Lumsden, M.D., et al.: Effect of molybdenum 4d hole substitution in BaFe2As2. Phys. Rev. B 85, 024503 (2012)
Article
Google Scholar
Li, L., Cao, H., McGuire, M.A., Kim, J.S., Stewart, G.R., Sefat, A.S.: Role of magnetism in superconductivity of BaFe2As2: study of 5d Au-doped crystals. Phys. Rev. B 92, 094504 (2015)
Article
Google Scholar
Fäth, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A.: Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285(5433), 1540–1542 (1999)
Article
Google Scholar
Holt, M., Harder, R., Winarski, R., Rose, V.: Nanoscale hard X-ray microscopy methods for materials studies. Ann. Rev. Mater. Res. 43, 183–211 (2013)
Article
Google Scholar
Tanner, B.K.: X-ray Diffraction Topography, vol. 10. Pergamon (1976)
Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z.: Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002)
Article
Google Scholar
Ice, G.E., Budai, J.D., Pang, J.W.L.: The race to X-ray microbeam and nanobeam science. Science 334, 1234 (2011)
Article
Google Scholar
Hofmann, F., Abbey, B., Liu, W., Xu, R., Usher, B.F., Balaur, E., et al.: X-ray micro-beam characterization of lattice rotations and distortions due to an individual dislocation. Nat. Commun. 4, 2774 (2013)
Article
Google Scholar
Hruszkewycz, S.O., Highland, M.J., Holt, M.V., Kim, D., Folkman, C.M., Thompson, C., et al.: Imaging local polarization in ferroelectric thin films by coherent X-ray Bragg projection ptychography. Phys. Rev. Lett. 110, 177601 (2013)
Article
Google Scholar
Laanait, N., Zhang, Z., Schlepütz, C.M.: Imaging nanoscale lattice variations by machine learning of X-ray diffraction microscopy data. Nanotechnology 27, 1–10 (2016)
Article
Google Scholar
Laanait, N., Zhang, Z., Schlepütz, C.M., Vila-Comamala, J., Highland, M.J., Fenter, P.: Full-field X-ray reflection microscopy of epitaxial thin-films. J. Synchrotron Radiat. 21, 1252–1261 (2014)
Article
Google Scholar
Oh, S.H., Park, C.G.: Misfit strain relaxation by dislocations in SrRuO3/SrTiO3 (001) heteroepitaxy. J. Appl. Phys. 95, 4691–4704 (2004)
Article
Google Scholar
Koster, G., Klein, L., Siemons, W., Rijnders, G., Dodge, J.S., Eom, C.B., et al.: Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012)
Article
Google Scholar