Pennycook, S.J., Varela, M., Lupini, A.R., Oxley, M.P., Chisholm, M.F.: Atomic-resolution spectroscopic imaging: past, present and future. J. Electron Microsc. **58**, 87–97 (2009)

Article
Google Scholar

Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., Idrobo, J.C.: Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. **109**, 206803 (2012)

Article
Google Scholar

Suenaga, K., Koshino, M.: Atom-by-atom spectroscopy at graphene edge. Nature **468**, 1088–1090 (2010)

Article
Google Scholar

Varela, M., Gazquez, J., Pennycook, S.J.: STEM-EELS imaging of complex oxides and interfaces. MRS Bull. **37**, 29–35 (2012)

Article
Google Scholar

Kumar, A., Ehara, Y., Wada, A., Funakubo, H., Griggio, F., Trolier-McKinstry, S., et al.: Dynamic piezoresponse force microscopy: spatially resolved probing of polarization dynamics in time and voltage domains. J. Appl. Phys. **112**, 052021 (2012)

Article
Google Scholar

Guo, S., Jesse, S., Kalnaus, S., Balke, N., Daniel, C., Kalinin, S.V.: Direct mapping of ion diffusion times on LiCoO(2) surfaces with nanometer resolution. J. Electrochem. Soc. **158**, A982–A990 (2011)

Article
Google Scholar

Kalinin, S., Balke, N., Jesse, S., Tselev, A., Kumar, A., Arruda, T.M., et al.: Li-ion dynamics and reactivity on the nanoscale. Mater. Today **14**, 548–558 (2011)

Article
Google Scholar

Jesse, S., Balke, N., Eliseev, E., Tselev, A., Dudney, N.J., Morozovska, A.N., et al.: Direct mapping of ionic transport in a si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano **5**, 9682–9695 (2011)

Article
Google Scholar

Kano, H., Segawa, H., Okuno, M., Leproux, P., Couderc, V.: Hyperspectral coherent Raman imaging—principle, theory, instrumentation, and applications to life sciences. J. Raman Spectrosc. **47**, 116–123 (2016)

Article
Google Scholar

Wabuyele, M.B., Yan, F., Griffin, G.D., Vo-Dinh, T.: Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev. Sci. Instrum. **76**, 063710 (2005)

Article
Google Scholar

Fu, D., Holtom, G., Freudiger, C., Zhang, X., Xie, X.S.: Hyperspectral imaging with stimulated raman scattering by chirped femtosecond lasers. J. Phys. Chem. B **117**, 4634–4640 (2013)

Article
Google Scholar

Bouillard, J.-S.G., Dickson, W., Wurtz, G.A., Zayats, A.V.: Near-field hyperspectral optical imaging. ChemPhysChem **15**, 619–629 (2014)

Article
Google Scholar

Jung, S., Foston, M., Kalluri, U.C., Tuskan, G.A., Ragauskas, A.J.: 3D chemical image using TOF-SIMS revealing the biopolymer component spatial and lateral distributions in biomass. Angew. Chem. Int. Ed. **51**, 12005–12008 (2012)

Article
Google Scholar

Ievlev, A.V., Maksymovych, P., Trassin, M., Seidel, J., Ramesh, R., Kalinin, S.V., et al.: Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces. **8**, 29588–29593 (2016)

Article
Google Scholar

McDonnell, L.A., Heeren, R.M.A.: Imaging mass spectrometry. Mass Spectrom. Rev. **26**, 606–643 (2007)

Article
Google Scholar

Zimmermann, T.: Spectral imaging and linear unmixing in light microscopy. In: Rietdorf, T., Denert, E. (eds.) Microscopy Techniques: −/−, pp. 245–265. Springer, Berlin (2005)

Chapter
Google Scholar

Peckner, R., Myers, S.A., Egertson, J.D., Johnson, R.S., Carr, S.A., MacCoss, M.J., et al.: Specter: linear deconvolution as a new paradigm for targeted analysis of data-independent acquisition mass spectrometry proteomics. bioRxiv (2017). https://doi.org/10.1101/152744

Google Scholar

Kalinin, S.V., Jesse, S., Rodriguez, B.J., Shin, J., Baddorf, A.P., Lee, H.N., et al.: Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology **17**, 3400 (2006)

Article
Google Scholar

Collins, L., Okatan, M.B., Li, Q., Kravenchenko, I.I., Lavrik, N.V., Kalinin, S.V., et al.: Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection. Nanotechnology **26**, 175707 (2015)

Article
Google Scholar

Collins, L., Belianinov, A., Somnath, S., Balke, N., Kalinin, S.V., Jesse, S.: Full data acquisition in Kelvin probe force microscopy: mapping dynamic electric phenomena in real space. Sci. Rep. **6**, 30557 (2016)

Article
Google Scholar

Cohen, G., Halpern, E., Nanayakkara, S.U., Luther, J.M., Held, C., Bennewitz, R., et al.: Reconstruction of surface potential from Kelvin probe force microscopy images. Nanotechnology **24**, 295702 (2013)

Article
Google Scholar

Kirkland, E.J.: Linear image approximations. In: Kirkland, E.J. (ed.) Advanced Computing in Electron Microscopy, pp. 29–60. Springer, Boston (2010)

Chapter
Google Scholar

Björck, Å: Numerical Methods for Least Squares Problems. SIAM (1996)

Kannan, R.: Scalable and Distributed Constrained Low Rank Approximations. Georgia Institute of Technology, Atlanta (2016)

Google Scholar

Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework. J. Glob. Optim. **58**, 285–319 (2014)

Article
Google Scholar

Kannan, R., Ishteva, M., Drake, B., Park, H.: Bounded matrix low rank approximation. In: Non-negative Matrix Factorization Techniques, pp. 89–118. Springer, Berlin (2016)

Kannan, R., Ishteva, M., Park, H.: Bounded matrix factorization for recommender system. Knowl. Inf. Syst. **39**, 491–511 (2014)

Article
Google Scholar

Keshava, N., Mustard, J.F.: Spectral unmixing. IEEE Signal Process. Mag. **19**, 44–57 (2002)

Article
Google Scholar

Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J.Y., Hero, A.O.: Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Signal Process. **57**, 4355–4368 (2009)

Article
Google Scholar

Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. In: Philosophical Magazine Series 6, vol. 2, pp. 559–572. (1901)

Jolliffe, I.: Principal component analysis. In: Wiley StatsRef: Statistics Reference Online. Wiley, London (2014)

Medina, J.M., Pereira, L.M., Correia, H.T., Nascimento, S.M.C.: Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra. J. Biomed. Opt. **16**, 076001 (2011)

Article
Google Scholar

Bonnet, N.: Artificial intelligence and pattern recognition techniques in microscope image processing and analysis. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 114, pp. 1–77. Elsevier Academic Press Inc, San Diego (2000)

Google Scholar

Bonnet, N.: Multivariate statistical methods for the analysis of microscope image series: applications in materials science. J. Microsc. Oxf. **190**, 2–18 (1998)

Article
Google Scholar

Serin, V., Andrieu, S., Serra, R., Bonell, F., Tiusan, C., Calmels, L., et al.: TEM and EELS measurements of interface roughness in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys. Rev. B **79**, 144413 (2009)

Article
Google Scholar

Bosman, M., Watanabe, M., Alexander, D.T.L., Keast, V.J.: Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy **106**, 1024–1032 (2006)

Article
Google Scholar

Biesinger, M.C., Paepegaey, P.-Y., McIntyre, N.S., Harbottle, R.R., Petersen, N.O.: Principal component analysis of TOF-SIMS images of organic monolayers. Anal. Chem. **74**, 5711–5716 (2002)

Article
Google Scholar

Race, A.M., Steven, R.T., Palmer, A.D., Styles, I.B., Bunch, J.: Memory efficient principal component analysis for the dimensionality reduction of large mass spectrometry imaging data sets. Anal. Chem. **85**, 3071–3078 (2013)

Article
Google Scholar

Kalinin, S.V., Rodriguez, B.J., Budai, J.D., Jesse, S., Morozovska, A.N., Bokov, A.A., et al.: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B **81**, 064107 (2010)

Article
Google Scholar

Jesse, S., Kalinin, S.V.: Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology **20**, 085714 (2009)

Article
Google Scholar

Kalinin, S.V., Rodriguez, B.J., Jesse, S., Morozovska, A.N., Bokov, A.A., Ye, Z.G.: Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. **95**, 142902 (2009)

Article
Google Scholar

Ovchinnikov, O.S., Jesse, S., Bintacchit, P., Trolier-McKinstry, S., Kalinin, S.V.: Disorder identification in hysteresis data: recognition analysis of the random-bond-random-field ising model. Phys. Rev. Lett. **103**, 157203 (2009)

Article
Google Scholar

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer **42**(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

Article
Google Scholar

Shiga, M., Muto, S., Tatsumi, K., Tsuda, K.: Matrix factorization for automatic chemical mapping from electron microscopic spectral imaging datasets. Trans. Mater. Res. Soc. Jpn **41**, 333–336 (2016)

Article
Google Scholar

Shiga, M., Tatsumi, K., Muto, S., Tsuda, K., Yamamoto, Y., Mori, T., et al.: Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy **170**, 43–59 (2016)

Article
Google Scholar

Kuang, D., Park, H.: Fast rank-2 nonnegative matrix factorization for hierarchical document clustering. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 739–747. (2013)

Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–273. (2003)

Candes, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM **55**, 111–119 (2012)

Article
Google Scholar

Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: International Conference on Machine Learning. (2011)

Kannan, R., Ballard, G., Park, H.: MPI-FAUN: an MPI-based framework for alternating-updating nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. **30**(3), 544–558 (2018)

Article
Google Scholar

Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 606–610. (2005)

Choo, J., Lee, C., Clarkson, E., Liu, Z., Lee, H., Chau, D.H.P., et al.: VisIRR: interactive visual information retrieval and recommendation for large-scale document data. Georgia Institute of Technology, Atlanta (2013)

Google Scholar

Choo, J., Lee, C., Kim, H., Lee, H., Liu, Z., Kannan, R., et al.: VisIRR: visual analytics for information retrieval and recommendation with large-scale document data. In: Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pp. 243–244. (2014)

Kim, J., Park, H.: Sparse nonnegative matrix factorization for clustering. Georgia Institute of Technology, Atlanta (2008)

Google Scholar

Bishop, C.M.: Pattern recognition and machine learning. Springer, Berlin (2006)

Google Scholar

Wit, E., Heuvel, E.V.D., Romeijn, J.-W.: ‘All models are wrong…’: an introduction to model uncertainty. Stat. Neerlandica **66**, 217–236 (2012)

Article
Google Scholar

Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: a modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373 (2017)

Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. (2013)

Singh, A., Gordon, G.: A unified view of matrix factorization models. In: Machine Learning and Knowledge Discovery in Databases, pp. 358–373. (2008)

Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal component analysis to the exponential family

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature **401**, 788–791 (1999)

Article
Google Scholar

Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. **33**, 1548–1560 (2011)

Article
Google Scholar

Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)

Google Scholar

Collins, M., Dasgupta, S., Schapire, R.E.: A generalization of principal components analysis to the exponential family. In: Advances in Neural Information Processing Systems, pp. 617–624. (2001)

Lee, D.D., Sebastian, S.H.: Learning the parts of objects by non-negative matrix factorization. Nature **401**, 788–791 (1999)

Article
Google Scholar

Singh, A.P., Gordon, G.J.: A unified view of matrix factorization models. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 358–373, Berlin (2008)

Pacholski, M.L., Winograd, N.: Imaging with mass spectrometry. Chem. Rev. **99**, 2977 (1999)

Article
Google Scholar

Ievlev, A.V., Belianinov, A., Jesse, S., Allison, D.P., Doktycz, M.J., Retterer, S.T., et al.: Automated interpretation and extraction of topographic information from time of flight secondary ion mass spectrometry data. Sci. Rep. **7**, 17099 (2017)

Article
Google Scholar

Seidel, J., Trassin, M., Zhang, Y., Maksymovych, P., Uhlig, T., Milde, P., et al.: Electronic properties of isosymmetric phase boundaries in highly strained Ca-Doped BiFeO_{3}. Adv. Mater. **26**, 4376–4380 (2014)

Article
Google Scholar

Ievlev, A.V., Maksymovych, P., Trassin, M., Seidel, J., Ramesh, R., Kalinin, S.V., et al.: Chemical state evolution in ferroelectric films during tip-induced polarization and electroresistive switching. ACS Appl. Mater. Interfaces. **8**, 29588–29593 (2016)

Article
Google Scholar

Kalinin, S.V., Pennycook, S.J.: Microscopy: hasten high resolution. Nature **515**, 487 (2014)

Article
Google Scholar

He, Q., Woo, J., Belianinov, A., Guliants, V.V., Borisevich, A.Y.: Better catalysts through microscopy: mesoscale M1/M2 intergrowth in Molybdenum–Vanadium based complex oxide catalysts for propane ammoxidation. ACS Nano **9**, 3470–3478 (2015)

Article
Google Scholar

Vasudevan, R.K., Ziatdinov, M., Jesse, S., Kalinin, S.V.: Phases and interfaces from real space atomically resolved data: physics-based deep data image analysis. Nano Lett. **16**, 5574–5581 (2016)

Article
Google Scholar

Ziatdinov, M., Fujii, S., Kiguchi, M., Enoki, T., Jesse, S., Kalinin, S.V.: Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology **27**, 495703 (2016)

Article
Google Scholar

He, Q., Woo, J., Belianinov, A., Guliants, V.V., Borisevich, A.Y.: Better catalysts through microscopy: mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium based complex oxide catalysts for propane ammoxidation. ACS Nano **9**, 3470–3478 (2015)

Article
Google Scholar

Ziatdinov, M., Maksov, A., Li, L., Sefat, A.S., Maksymovych, P., Kalinin, S.V.: Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe2As2. Nanotechnology **27**, 475706 (2016)

Article
Google Scholar

Sefat, A.S., Marty, K., Christianson, A.D., Saparov, B., McGuire, M.A., Lumsden, M.D., et al.: Effect of molybdenum 4*d* hole substitution in BaFe_{2}As_{2}. Phys. Rev. B **85**, 024503 (2012)

Article
Google Scholar

Li, L., Cao, H., McGuire, M.A., Kim, J.S., Stewart, G.R., Sefat, A.S.: Role of magnetism in superconductivity of BaFe_{2}As_{2}: study of 5*d* Au-doped crystals. Phys. Rev. B **92**, 094504 (2015)

Article
Google Scholar

Fäth, M., Freisem, S., Menovsky, A.A., Tomioka, Y., Aarts, J., Mydosh, J.A.: Spatially inhomogeneous metal-insulator transition in doped manganites. Science **285**(5433), 1540–1542 (1999)

Article
Google Scholar

Holt, M., Harder, R., Winarski, R., Rose, V.: Nanoscale hard X-ray microscopy methods for materials studies. Ann. Rev. Mater. Res. **43**, 183–211 (2013)

Article
Google Scholar

Tanner, B.K.: X-ray Diffraction Topography, vol. 10. Pergamon (1976)

Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z.: Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature **415**, 887–890 (2002)

Article
Google Scholar

Ice, G.E., Budai, J.D., Pang, J.W.L.: The race to X-ray microbeam and nanobeam science. Science **334**, 1234 (2011)

Article
Google Scholar

Hofmann, F., Abbey, B., Liu, W., Xu, R., Usher, B.F., Balaur, E., et al.: X-ray micro-beam characterization of lattice rotations and distortions due to an individual dislocation. Nat. Commun. **4**, 2774 (2013)

Article
Google Scholar

Hruszkewycz, S.O., Highland, M.J., Holt, M.V., Kim, D., Folkman, C.M., Thompson, C., et al.: Imaging local polarization in ferroelectric thin films by coherent X-ray Bragg projection ptychography. Phys. Rev. Lett. **110**, 177601 (2013)

Article
Google Scholar

Laanait, N., Zhang, Z., Schlepütz, C.M.: Imaging nanoscale lattice variations by machine learning of X-ray diffraction microscopy data. Nanotechnology **27**, 1–10 (2016)

Article
Google Scholar

Laanait, N., Zhang, Z., Schlepütz, C.M., Vila-Comamala, J., Highland, M.J., Fenter, P.: Full-field X-ray reflection microscopy of epitaxial thin-films. J. Synchrotron Radiat. **21**, 1252–1261 (2014)

Article
Google Scholar

Oh, S.H., Park, C.G.: Misfit strain relaxation by dislocations in SrRuO_{3}/SrTiO_{3} (001) heteroepitaxy. J. Appl. Phys. **95**, 4691–4704 (2004)

Article
Google Scholar

Koster, G., Klein, L., Siemons, W., Rijnders, G., Dodge, J.S., Eom, C.B., et al.: Structure, physical properties, and applications of SrRuO_{3} thin films. Rev. Mod. Phys. **84**, 253–298 (2012)

Article
Google Scholar