Lindeboom, N., Chang, P.R., Tyler, R.T.: Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch Starke 56(3–4), 89–99 (2004)
Article
Google Scholar
de Pater, S., Caspers, M., Kottenhagen, M., Meima, H., ter Stege, R., de Vetten, N.: Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant. Biotech. J. 4(1), 123–134 (2006)
Article
Google Scholar
Maple, J., Aldridge, C., Møller, S.G.: Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 43(6), 811–823 (2005)
Article
Google Scholar
Vitha, S., McAndrew, R.S., Osteryoung, K.W.: FtsZ ring formation at the chloroplast division site in plants. J. Cell Biol. 153(1), 111–119 (2001)
Article
Google Scholar
Miyagishima, S.Y., Nozaki, H., Nishida, K., Nishida, K., Matsuzaki, M., Kuroiwa, T.: Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J. Mol. Evol. 58(3), 291–303 (2004)
Article
Google Scholar
Stokes, K.D., Osteryoung, K.W.: Early divergence of the FtsZ1 and FtsZ2 plastid division gene families in photosynthetic eukaryotes. Gene 320, 97–108 (2003)
Article
Google Scholar
Terbush, A.D., Yoshida, Y., Osteryoung, K.W.: FtsZ in chloroplast division: structure, function and evolution. Curr. Opin. Cell Biol. (2013). doi:10.1016/j.ceb.2013.04.006
Google Scholar
Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., Lee, W.Y.: Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10(12), 1991–2004 (1998)
Google Scholar
Yoder, D.W., Kadirjan-Kalbach, D., Olson, B.J.S.C., Miyagishima, S.Y., DeBlasio, S.L., Hangarter, R.P., Osteryoung, K.W.: Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. Plant Cell Physiol. 48(6), 775–791 (2007)
Article
Google Scholar
Schmitz, A.J., Glynn, J.M., Olson, B.J.S.C., Stokes, K.D., Osteryoung, K.W.: Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol. Plant 2(6), 1211–1222 (2009). doi:10.1093/mp/ssp077
Article
Google Scholar
Glynn, J.M., Froehlich, J.E., Osteryoung, K.W.: Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20(9), 2460–2470 (2008)
Article
Google Scholar
Vitha, S., Froehlich, J.E., Koksharova, O., Pyke, K.A., van Erp, H., Osteryoung, K.W.: ARC6 Is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15(8), 1918–1933 (2003)
Article
Google Scholar
Maple, J., Chua, N.H., Møller, S.G.: The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J. 31(3), 269–277 (2002)
Article
Google Scholar
Fujiwara, M.T., Hashimoto, H., Kazama, Y., Abe, T., Yoshida, S., Sato, N., Itoh, R.D.: The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol. 49(3), 345–361 (2008)
Article
Google Scholar
Zhang, M., Schmitz, A.J., Kadirjan-Kalbach, D.K., Terbush, A.D., Osteryoung, K.W.: Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in Arabidopsis through interaction with FtsZ2. Plant Cell 25(5), 1787–1802 (2013). doi:10.1105/tpc.113.111047
Article
Google Scholar
Glynn, J.M., Yang, Y., Vitha, S., Schmitz, A.J., Hemmes, M., Miyagishima, S.Y., Osteryoung, K.W.: PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J. 59(5), 700–711 (2009)
Article
Google Scholar
Olson, B.J., Wang, Q., Osteryoung, K.W.: GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J. Biol. Chem. 285(27), 20634–20643 (2010). doi:10.1074/jbc.M110.122614
Article
Google Scholar
Smith, A.G., Johnson, C.B., Vitha, S., Holzenburg, A.: Plant FtsZ1 and FtsZ2 expressed in a eukaryotic host: GTPase activity and self-assembly. FEBS Lett. 584(1), 166–172 (2010)
Article
Google Scholar
TerBush, A.D., Osteryoung, K.W.: Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J. Cell Biol. 199(4), 623–637 (2012). doi:10.1083/jcb.201205114
Article
Google Scholar
Johnson, C.B., Shaik, R., Abdallah, R., Vitha, S., Holzenburg, A.: FtsZ1/FtsZ2 turnover in chloroplasts and the role of ARC3. Microsc. Microanal. 1–11 (2015). doi:10.1017/S1431927615000082
Li, Z., Trimble, M.J., Brun, Y.V., Jensen, G.J.: The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26(22), 4694–4708 (2007)
Article
Google Scholar
Szwedziak, P., Wang, Q., Bharat, T.A.M., Tsim, M., Löwe, J.: Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. Elife 3, e04601 (2014). doi:10.7554/eLife.04601
Article
Google Scholar
Li, Y., Hsin, J., Zhao, L., Cheng, Y., Shang, W., Huang, K.C., Wang, H.W., Ye, S.: FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341(6144), 392–395 (2013). doi:10.1126/science.1239248
Article
Google Scholar
Osawa, M., Erickson, H.P.: Liposome division by a simple bacterial division machinery. Proc. Natl. Acad. Sci. USA. 110(27), 11000–11004 (2013). doi:10.1073/pnas.1222254110
Article
Google Scholar
Loose, M., Mitchison, T.J.: The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16, 38–46 (2014). doi:10.1038/ncb2885
Article
Google Scholar
Arumugam, S., Petrasek, Z., Schwille, P.: MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proc. Natl. Acad. Sci. USA. 111(13), E1192–E1200 (2014). doi:10.1073/pnas.1317764111
Article
Google Scholar
Smith, A.G., Johnson, C.B., Vitha, S., Holzenburg, A.: Oligomerization of plant FtsZ1 and FtsZ2 plastid division proteins. Arch. Biochem. Biophys. 513(2), 94–101 (2011). doi:10.1016/j.abb.2011.07.001
Article
Google Scholar
Gao, H., Kadirjan-Kalbach, D., Froehlich, J.E., Osteryoung, K.W.: ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl. Acad. Sci. USA. 100(7), 4328–4333 (2003)
Article
Google Scholar
Miyagishima, S.Y., Froehlich, J.E., Osteryoung, K.W.: PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell 18(10), 2517–2530 (2006)
Article
Google Scholar
Fujiwara, M.T., Sekine, K., Yamamoto, Y.Y., Abe, T., Sato, N., Itoh, R.D.: Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana. Plant Cell Physiol. 50(6), 1116–1126 (2009). doi:10.1093/pcp/pcp063
Article
Google Scholar
Johnson, C.B., Tang, L.K., Smith, A.G., Ravichandran, A., Luo, Z., Vitha, S., Holzenburg, A.: Single particle tracking analysis of the chloroplast division protein FtsZ anchoring to the inner envelope membrane. Microsc. Microanal. 19(3), 507–512 (2013). doi:10.1017/S143192761300038X
Article
Google Scholar
Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)
Article
Google Scholar
Littlejohn, G.R., Gouveia, J.D., Edner, C., Smirnoff, N., Love, J.: Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. N. Phytol. 186(4), 1018–1025 (2010)
Article
Google Scholar
Ferris, A.M., Giberson, R.T., Sanders, M.A., Day, J.R.: Advanced laboratory techniques for sample processing and immunolabeling using microwave radiation. J. Neurosci. Meth. 182(2), 157–164 (2009)
Article
Google Scholar
Stokes, K.D., McAndrew, R.S., Figueroa, R., Vitha, S., Osteryoung, K.W.: Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol. 124(4), 1668–1677 (2000)
Article
Google Scholar
McDonald, K.L., Webb, R.I.: Freeze substitution in 3 hours or less. J. Microsc. 243(3), 227–233 (2011). doi:10.1111/j.1365-2818.2011.03526.x
Article
Google Scholar
Ress, D.B., Harlow, M.L., Marshall, R.M., McMahan, U.J.: Methods for generating high-resolution structural models from electron microscope tomography data. Structure 12(10), 1763–1774 (2004). doi:10.1016/j.str.2004.07.022
Article
Google Scholar
McMahan, U.J., Marshall, R., Szule, J., Jung, J.H.: Software for electron tomography. http://em3d.stanford.edu/ (2011). 2011
Glynn, J.M., Miyagishima, S., Yoder, D.W., Osteryoung, K.W., Vitha, S.: Chloroplast division. Traffic 8(5), 451–461 (2007)
Article
Google Scholar
Gustafsson, M.G.L., Shao, L., Carlton, P.M., Wang, C.J.R., Golubovskaya, I.N., Cande, W. Z.D., Agard, A., Sedat, J.W.: Three-dimensional resolution doubling in widefield fluorescence microscopy by structured illumination. Biophys. J. (2008). doi:10.1529/biophysj.107.120345
Srinivasan, R., Mishra, M., Wu, L., Yin, Z., Balasubramanian, M.K.: The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes Dev. 22(13), 1741–1746 (2008). doi:10.1101/gad.1660908
Article
Google Scholar
Yoshida, Y., Kuroiwa, H., Misumi, O., Nishida, K., Yagisawa, F., Fujiwara, T., Nanamiya, H., Kawamura, F., Kuroiwa, T.: Isolated chloroplast division machinery can actively constrict after stretching. Science 313(5792), 1435–1438 (2006). doi:10.1126/science.1129689
Article
Google Scholar
Gilkey, J.C., Staehelin, L.A.: Advances in ultra-rapid freezing for the preservation of cellular ultrastructure. J. Electron Microsc. Techn. 3(2), 177–210 (1986). doi:10.1002/jemt.1060030206
Article
Google Scholar
Kellenberger, E.: The response of biological macromolecules and supramolecular structures to the physics of specimen cryopreparation. In: Steinbrecht, R., Zierold, K. (eds.) Cryotechniques in Biological Electron Microscopy, pp. 35–63. Springer, Berlin (1987)
Chapter
Google Scholar
Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M., Briggs, J.A.G.: Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 192(1), 111–119 (2011). doi:10.1083/jcb.201009037
Article
Google Scholar
Watanabe, S., Punge, A., Hollopeter, G., Willig, K.I., Hobson, R.J., Davis, M.W., Hell, S.W., Jorgensen, E.M.: Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8(1), 80–84 (2011). doi:10.1038/nmeth.1537
Article
Google Scholar
Bell, K., Mitchell, S., Paultre, D., Posch, M., Oparka, K.: Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol. 161(4), 1595–1603 (2013). doi:10.1104/pp.112.212365
Article
Google Scholar
Xiong, H., Zhou, Z., Zhu, M., Lv, X., Li, A., Li, S., Li, L., Yang, T., Wang, S., Yang, Z., Xu, T., Luo, Q., Gong, H., Zeng, S.: Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Commun. 5 (2014). doi:10.1038/ncomms4992
Erickson, H.P., Taylor, D.W., Taylor, K.A., Bramhill, D.: Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA. 93(1), 519–523 (1996)
Article
Google Scholar
Lu, C.L., Reedy, M., Erickson, H.P.: Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182(1), 164–170 (2000)
Article
Google Scholar
Popp, D., Iwasa, M., Narita, A., Erickson, H.P., Maeda, Y.: FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91(5), 340–350 (2009)
Article
Google Scholar
Mingorance, J., Rivas, G., Velez, M., Gomez-Puertas, P., Vicente, M.: Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol. 18(8), 348–356 (2010). doi:10.1016/j.tim.2010.06.001
Article
Google Scholar
Crowther, R.A., DeRosier, D.J., Klug, A.: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. Lond. A. 317(1530), 319–340 (1970). doi:10.1098/rspa.1970.0119
Article
Google Scholar