Thomas, J.M., Leary, R.K., Eggeman, A.S., Midgley, P.A.: The rapidly changing face of electron microscopy. Chem. Phys. Lett. 631, 103–113 (2015). https://doi.org/10.1016/j.cplett.2015.04.048
Article
CAS
Google Scholar
Murphy, K.P.: Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning. MIT Press, Boston (2012)
Google Scholar
de la Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M.: Mapping titanium and tin oxide phases using EELS: an application of independent component analysis. Ultramicroscopy 111(2), 169–176 (2011). https://doi.org/10.1016/J.ULTRAMIC.2010.10.001
Article
Google Scholar
Nicoletti, O., de la Peña, F., Leary, R.K., Holland, D.J., Ducati, C., Midgley, P.A.: Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502(7469), 80–84 (2013). https://doi.org/10.1038/nature12469
Article
CAS
Google Scholar
Rossouw, D., Burdet, P., de la Peña, F., Ducati, C., Knappett, B.R., Wheatley, A.E.H., Midgley, P.A.: Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning. Nano Lett. 15(4), 2716–2720 (2015). https://doi.org/10.1021/acs.nanolett.5b00449
Article
CAS
Google Scholar
Rossouw, D., Krakow, R., Saghi, Z., Yeoh, C.S., Burdet, P., Leary, R.K., de la Peña, F., Ducati, C., Rae, C.M., Midgley, P.A.: Blind source separation aided characterization of the \(\gamma\)’ strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy. Acta Mater. 107, 229–238 (2016). https://doi.org/10.1016/j.actamat.2016.01.042
Article
CAS
Google Scholar
Rossouw, D., Knappett, B.R., Wheatley, A.E.H., Midgley, P.A.: A new method for determining the composition of core-shell nanoparticles via dual-EDX+EELS spectrum imaging. Particle Particle Syst. Charact. 33(10), 749–755 (2016). https://doi.org/10.1002/ppsc.201600096
Article
CAS
Google Scholar
Shiga, M., Tatsumi, K., Muto, S., Tsuda, K., Yamamoto, Y., Mori, T., Tanji, T.: Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy 170, 43–59 (2016). https://doi.org/10.1016/J.ULTRAMIC.2016.08.006
Article
CAS
Google Scholar
Eggeman, A.S., Krakow, R., Midgley, Pa: Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis. Nat. Commun. 6, 7267 (2015). https://doi.org/10.1038/ncomms8267
Article
CAS
Google Scholar
Sunde, J.K., Marioara, C.D., Van Helvoort, A.T.J., Holmestad, R.: The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Mater. Charact. 142, 458–469 (2018). https://doi.org/10.1016/j.matchar.2018.05.031
Article
CAS
Google Scholar
Rauch, E.F., Veron, M.: Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a TEM. Materialwissenschaft und Werkstofftechnik 36(10), 552–556 (2005). https://doi.org/10.1002/mawe.200500923
Article
CAS
Google Scholar
Rauch, E.F., Portillo, J., Nicolopoulos, S., Bultreys, D., Rouvimov, S., Moeck, P.: Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Zeitschrift für Kristallographie 225(2–3), 103–109 (2010). https://doi.org/10.1524/zkri.2010.1205
Article
CAS
Google Scholar
Vincent, R., Midgley, P.: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53(3), 271–282 (1994). https://doi.org/10.1016/0304-3991(94)90039-6
Article
CAS
Google Scholar
White, T., Eggeman, A., Midgley, P.: Is precession electron diffraction kinematical? Part I: “Phase-scrambling” multislice simulations. Ultramicroscopy 110(7), 763–770 (2010). https://doi.org/10.1016/J.ULTRAMIC.2009.10.013
Article
CAS
Google Scholar
Eggeman, A.S., White, T.A., Midgley, P.A.: Is precession electron diffraction kinematical? Part II. A practical method to determine the optimum precession angle. Ultramicroscopy 110(7), 771–777 (2010). https://doi.org/10.1016/j.ultramic.2009.10.012
Article
CAS
Google Scholar
Sinkler, W., Marks, L.D.: Characteristics of precession electron diffraction intensities from dynamical simulations. Zeitschrift für Kristallographie 225(2–3), 47–55 (2010). https://doi.org/10.1524/zkri.2010.1199
Article
CAS
Google Scholar
Rauch, E.F., Véron, M.: Virtual dark-field images reconstructed from electron diffraction patterns. Eur. Phys. J. Appl. Phys. 66(1), 10,701 (2014). https://doi.org/10.1051/epjap/2014130556
Article
Google Scholar
Gammer, C., Burak Ozdol, V., Liebscher, C.H., Minor, A.M.: Diffraction contrast imaging using virtual apertures. Ultramicroscopy 155, 1–10 (2015). https://doi.org/10.1016/J.ULTRAMIC.2015.03.015
Article
CAS
Google Scholar
Rouviere, J.L., Béché, A., Martin, Y., Denneulin, T., Cooper, D.: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl. Phys. Lett. 103(24), 241913 (2013). https://doi.org/10.1063/1.4829154
Article
CAS
Google Scholar
Moeck, P., Rouvimov, S., Rauch, E.F., Véron, M., Kirmse, H., Häusler, I., Neumann, W., Bultreys, D., Maniette, Y., Nicolopoulos, S.: High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes. Crys. Res. Technol. 46(6), 589–606 (2011). https://doi.org/10.1002/crat.201000676
Article
CAS
Google Scholar
Kelly, A., Groves, G., Kidd, P.: Crystallography and Crystal Defects. Wiley, Chichester (2000)
Google Scholar
Munshi, A.M., Dheeraj, D.L., Fauske, V.T., Kim, D.C., Huh, J., Reinertsen, J.F., Ahtapodov, L., Lee, K.D., Heidari, B., van Helvoort, A.T.J., Fimland, B.O., Weman, H.: Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 14(2), 960–966 (2014). https://doi.org/10.1021/nl404376m
Article
CAS
Google Scholar
Eggeman, A., London, A., Midgley, P.: Ultrafast electron diffraction pattern simulations using gpu technology. Applications to lattice vibrations. Ultramicroscopy 134, 44–47 (2013). https://doi.org/10.1016/j.ultramic.2013.05.013
Article
CAS
Google Scholar
Palatinus, L., Jacob, D., Cuvillier, P., Klementová, M., Sinkler, W., Marks, L.D.: IUCr: structure refinement from precession electron diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. 69(2), 171–188 (2013). https://doi.org/10.1107/S010876731204946X
Article
CAS
Google Scholar
Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)
Google Scholar
Jolliffe, I.: Principal component analysis. In: International Encyclopedia of Statistical Science, pp. 1094–1096. Springer , Berlin (2011)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)
Book
Google Scholar
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–91 (1999). https://doi.org/10.1038/44565
Article
CAS
Google Scholar
de la Pena, F., Ostasevicius, T., Tonaas Fauske, V., Burdet, P., Jokubauskas, P., Nord, M., Sarahan, M., Prestat, E., Johnstone, D.N., Taillon, J., Jan Caron, J., Furnival, T., MacArthur, K.E., Eljarrat, A., Mazzucco, S., Migunov, V., Aarholt, T., Walls, M., Winkler, F., Donval, G., Martineau, B., Garmannslund, A., Zagonel, L.F., Iyengar, I.: Electron Microscopy (Big and Small) Data Analysis With the Open Source Software Package HyperSpy. Microsc. Microanal. 23(S1), 214–215 (2017). https://doi.org/10.1017/S1431927617001751
Article
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)
Google Scholar
Shlens, J.: A tutorial on principal component analysis. CoRR (2014). arXiv:abs/1404.1100
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)
Google Scholar
Boutsidis, C., Gallopoulos, E.: Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008). https://doi.org/10.1016/j.patcog.2007.09.010
Article
Google Scholar
Everitt, B., Landau, S., Leese, M.: Clust. Anal. Wiley, Chichester (2009)
Google Scholar
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7
Article
Google Scholar
Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference on decision and control including the 17th symposium on adaptive processes, pp. 761–766. IEEE, San Diego (1978). https://doi.org/10.1109/CDC.1978.268028
Marimont, R.B., Shapiro, M.B.: Nearest neighbour searches and the curse of dimensionality. IMA J. Appl. Math. 24(1), 59–70 (1979). https://doi.org/10.1093/imamat/24.1.59
Article
Google Scholar
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metric in high-dimensional space (2002)
Rencher, A.: Methods of Multivariate Analysis. Wiley Series in Probability and Statistics. Wiley, Hoboken (2002)
Book
Google Scholar
Kannan, R., Ievlev, A.V., Laanait, N., Ziatdinov, M.A., Vasudevan, R.K., Jesse, S., Kalinin, S.V.: Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform. Adv. Struct. Chem. Imaging 4(1), 6 (2018). https://doi.org/10.1186/s40679-018-0055-8
Article
CAS
Google Scholar
Rousseeuw, P.J., Trauwaertb, E., Kaufman, L.: Fuzzy clustering with high contrast. J. Comput. Appl. Math. 0427(95), 8–9 (1995)
Google Scholar
Spiegelberg, J., Rusz, J., Thersleff, T., Pelckmans, K.: Analysis of electron energy loss spectroscopy data using geometric extraction methods. Ultramicroscopy 174, 14–26 (2017). https://doi.org/10.1016/J.ULTRAMIC.2016.12.014
Article
CAS
Google Scholar