Thomas, J.M., Leary, R.K., Eggeman, A.S., Midgley, P.A.: The rapidly changing face of electron microscopy. Chem. Phys. Lett. **631**, 103–113 (2015). https://doi.org/10.1016/j.cplett.2015.04.048

Article
CAS
Google Scholar

Murphy, K.P.: Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning. MIT Press, Boston (2012)

Google Scholar

de la Peña, F., Berger, M.H., Hochepied, J.F., Dynys, F., Stephan, O., Walls, M.: Mapping titanium and tin oxide phases using EELS: an application of independent component analysis. Ultramicroscopy **111**(2), 169–176 (2011). https://doi.org/10.1016/J.ULTRAMIC.2010.10.001

Article
Google Scholar

Nicoletti, O., de la Peña, F., Leary, R.K., Holland, D.J., Ducati, C., Midgley, P.A.: Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature **502**(7469), 80–84 (2013). https://doi.org/10.1038/nature12469

Article
CAS
Google Scholar

Rossouw, D., Burdet, P., de la Peña, F., Ducati, C., Knappett, B.R., Wheatley, A.E.H., Midgley, P.A.: Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning. Nano Lett. **15**(4), 2716–2720 (2015). https://doi.org/10.1021/acs.nanolett.5b00449

Article
CAS
Google Scholar

Rossouw, D., Krakow, R., Saghi, Z., Yeoh, C.S., Burdet, P., Leary, R.K., de la Peña, F., Ducati, C., Rae, C.M., Midgley, P.A.: Blind source separation aided characterization of the \(\gamma\)’ strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy. Acta Mater. **107**, 229–238 (2016). https://doi.org/10.1016/j.actamat.2016.01.042

Article
CAS
Google Scholar

Rossouw, D., Knappett, B.R., Wheatley, A.E.H., Midgley, P.A.: A new method for determining the composition of core-shell nanoparticles via dual-EDX+EELS spectrum imaging. Particle Particle Syst. Charact. **33**(10), 749–755 (2016). https://doi.org/10.1002/ppsc.201600096

Article
CAS
Google Scholar

Shiga, M., Tatsumi, K., Muto, S., Tsuda, K., Yamamoto, Y., Mori, T., Tanji, T.: Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy **170**, 43–59 (2016). https://doi.org/10.1016/J.ULTRAMIC.2016.08.006

Article
CAS
Google Scholar

Eggeman, A.S., Krakow, R., Midgley, Pa: Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis. Nat. Commun. **6**, 7267 (2015). https://doi.org/10.1038/ncomms8267

Article
CAS
Google Scholar

Sunde, J.K., Marioara, C.D., Van Helvoort, A.T.J., Holmestad, R.: The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Mater. Charact. **142**, 458–469 (2018). https://doi.org/10.1016/j.matchar.2018.05.031

Article
CAS
Google Scholar

Rauch, E.F., Veron, M.: Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a TEM. Materialwissenschaft und Werkstofftechnik **36**(10), 552–556 (2005). https://doi.org/10.1002/mawe.200500923

Article
CAS
Google Scholar

Rauch, E.F., Portillo, J., Nicolopoulos, S., Bultreys, D., Rouvimov, S., Moeck, P.: Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Zeitschrift für Kristallographie **225**(2–3), 103–109 (2010). https://doi.org/10.1524/zkri.2010.1205

Article
CAS
Google Scholar

Vincent, R., Midgley, P.: Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy **53**(3), 271–282 (1994). https://doi.org/10.1016/0304-3991(94)90039-6

Article
CAS
Google Scholar

White, T., Eggeman, A., Midgley, P.: Is precession electron diffraction kinematical? Part I: “Phase-scrambling” multislice simulations. Ultramicroscopy **110**(7), 763–770 (2010). https://doi.org/10.1016/J.ULTRAMIC.2009.10.013

Article
CAS
Google Scholar

Eggeman, A.S., White, T.A., Midgley, P.A.: Is precession electron diffraction kinematical? Part II. A practical method to determine the optimum precession angle. Ultramicroscopy **110**(7), 771–777 (2010). https://doi.org/10.1016/j.ultramic.2009.10.012

Article
CAS
Google Scholar

Sinkler, W., Marks, L.D.: Characteristics of precession electron diffraction intensities from dynamical simulations. Zeitschrift für Kristallographie **225**(2–3), 47–55 (2010). https://doi.org/10.1524/zkri.2010.1199

Article
CAS
Google Scholar

Rauch, E.F., Véron, M.: Virtual dark-field images reconstructed from electron diffraction patterns. Eur. Phys. J. Appl. Phys. **66**(1), 10,701 (2014). https://doi.org/10.1051/epjap/2014130556

Article
Google Scholar

Gammer, C., Burak Ozdol, V., Liebscher, C.H., Minor, A.M.: Diffraction contrast imaging using virtual apertures. Ultramicroscopy **155**, 1–10 (2015). https://doi.org/10.1016/J.ULTRAMIC.2015.03.015

Article
CAS
Google Scholar

Rouviere, J.L., Béché, A., Martin, Y., Denneulin, T., Cooper, D.: Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl. Phys. Lett. **103**(24), 241913 (2013). https://doi.org/10.1063/1.4829154

Article
CAS
Google Scholar

Moeck, P., Rouvimov, S., Rauch, E.F., Véron, M., Kirmse, H., Häusler, I., Neumann, W., Bultreys, D., Maniette, Y., Nicolopoulos, S.: High spatial resolution semi-automatic crystallite orientation and phase mapping of nanocrystals in transmission electron microscopes. Crys. Res. Technol. **46**(6), 589–606 (2011). https://doi.org/10.1002/crat.201000676

Article
CAS
Google Scholar

Kelly, A., Groves, G., Kidd, P.: Crystallography and Crystal Defects. Wiley, Chichester (2000)

Google Scholar

Munshi, A.M., Dheeraj, D.L., Fauske, V.T., Kim, D.C., Huh, J., Reinertsen, J.F., Ahtapodov, L., Lee, K.D., Heidari, B., van Helvoort, A.T.J., Fimland, B.O., Weman, H.: Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. **14**(2), 960–966 (2014). https://doi.org/10.1021/nl404376m

Article
CAS
Google Scholar

Eggeman, A., London, A., Midgley, P.: Ultrafast electron diffraction pattern simulations using gpu technology. Applications to lattice vibrations. Ultramicroscopy **134**, 44–47 (2013). https://doi.org/10.1016/j.ultramic.2013.05.013

Article
CAS
Google Scholar

Palatinus, L., Jacob, D., Cuvillier, P., Klementová, M., Sinkler, W., Marks, L.D.: IUCr: structure refinement from precession electron diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. **69**(2), 171–188 (2013). https://doi.org/10.1107/S010876731204946X

Article
CAS
Google Scholar

Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. **5**, 1457–1469 (2004)

Google Scholar

Jolliffe, I.: Principal component analysis. In: International Encyclopedia of Statistical Science, pp. 1094–1096. Springer , Berlin (2011)

Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

Book
Google Scholar

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature **401**(6755), 788–91 (1999). https://doi.org/10.1038/44565

Article
CAS
Google Scholar

de la Pena, F., Ostasevicius, T., Tonaas Fauske, V., Burdet, P., Jokubauskas, P., Nord, M., Sarahan, M., Prestat, E., Johnstone, D.N., Taillon, J., Jan Caron, J., Furnival, T., MacArthur, K.E., Eljarrat, A., Mazzucco, S., Migunov, V., Aarholt, T., Walls, M., Winkler, F., Donval, G., Martineau, B., Garmannslund, A., Zagonel, L.F., Iyengar, I.: Electron Microscopy (Big and Small) Data Analysis With the Open Source Software Package HyperSpy. Microsc. Microanal. **23**(S1), 214–215 (2017). https://doi.org/10.1017/S1431927617001751

Article
Google Scholar

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. **12**(Oct), 2825–2830 (2011)

Google Scholar

Shlens, J.: A tutorial on principal component analysis. CoRR (2014). arXiv:abs/1404.1100

Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

Google Scholar

Boutsidis, C., Gallopoulos, E.: Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. **41**(4), 1350–1362 (2008). https://doi.org/10.1016/j.patcog.2007.09.010

Article
Google Scholar

Everitt, B., Landau, S., Leese, M.: Clust. Anal. Wiley, Chichester (2009)

Google Scholar

Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. **10**(2–3), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

Article
Google Scholar

Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference on decision and control including the 17th symposium on adaptive processes, pp. 761–766. IEEE, San Diego (1978). https://doi.org/10.1109/CDC.1978.268028

Marimont, R.B., Shapiro, M.B.: Nearest neighbour searches and the curse of dimensionality. IMA J. Appl. Math. **24**(1), 59–70 (1979). https://doi.org/10.1093/imamat/24.1.59

Article
Google Scholar

Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metric in high-dimensional space (2002)

Rencher, A.: Methods of Multivariate Analysis. Wiley Series in Probability and Statistics. Wiley, Hoboken (2002)

Book
Google Scholar

Kannan, R., Ievlev, A.V., Laanait, N., Ziatdinov, M.A., Vasudevan, R.K., Jesse, S., Kalinin, S.V.: Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform. Adv. Struct. Chem. Imaging **4**(1), 6 (2018). https://doi.org/10.1186/s40679-018-0055-8

Article
CAS
Google Scholar

Rousseeuw, P.J., Trauwaertb, E., Kaufman, L.: Fuzzy clustering with high contrast. J. Comput. Appl. Math. **0427**(95), 8–9 (1995)

Google Scholar

Spiegelberg, J., Rusz, J., Thersleff, T., Pelckmans, K.: Analysis of electron energy loss spectroscopy data using geometric extraction methods. Ultramicroscopy **174**, 14–26 (2017). https://doi.org/10.1016/J.ULTRAMIC.2016.12.014

Article
CAS
Google Scholar